Solveeit Logo

Question

Question: $\int \left( \frac{2^x - 5^x}{10^x} \right) dx$ is equal to...

(2x5x10x)dx\int \left( \frac{2^x - 5^x}{10^x} \right) dx is equal to

Answer

12xln215xln5+C\frac{1}{2^x \ln 2} - \frac{1}{5^x \ln 5} + C

Explanation

Solution

The problem asks us to evaluate the integral (2x5x10x)dx\int \left( \frac{2^x - 5^x}{10^x} \right) dx.

First, we simplify the integrand: 2x5x10x=2x10x5x10x\frac{2^x - 5^x}{10^x} = \frac{2^x}{10^x} - \frac{5^x}{10^x} Using the property axbx=(ab)x\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x: =(210)x(510)x= \left(\frac{2}{10}\right)^x - \left(\frac{5}{10}\right)^x =(15)x(12)x= \left(\frac{1}{5}\right)^x - \left(\frac{1}{2}\right)^x This can also be written using negative exponents: =5x2x= 5^{-x} - 2^{-x} Now, we need to integrate this expression: (5x2x)dx=5xdx2xdx\int (5^{-x} - 2^{-x}) dx = \int 5^{-x} dx - \int 2^{-x} dx We use the standard integration formula for akxa^{kx}: akxdx=akxklna+C\int a^{kx} dx = \frac{a^{kx}}{k \ln a} + C For the first term, 5xdx\int 5^{-x} dx: Here, a=5a=5 and k=1k=-1. 5xdx=5x(1)ln5+C1=5xln5+C1\int 5^{-x} dx = \frac{5^{-x}}{(-1) \ln 5} + C_1 = -\frac{5^{-x}}{\ln 5} + C_1 For the second term, 2xdx\int 2^{-x} dx: Here, a=2a=2 and k=1k=-1. 2xdx=2x(1)ln2+C2=2xln2+C2\int 2^{-x} dx = \frac{2^{-x}}{(-1) \ln 2} + C_2 = -\frac{2^{-x}}{\ln 2} + C_2 Combining these results: (2x5x10x)dx=5xln5(2xln2)+C\int \left( \frac{2^x - 5^x}{10^x} \right) dx = -\frac{5^{-x}}{\ln 5} - \left(-\frac{2^{-x}}{\ln 2}\right) + C =5xln5+2xln2+C= -\frac{5^{-x}}{\ln 5} + \frac{2^{-x}}{\ln 2} + C This can be rearranged for better readability: =2xln25xln5+C= \frac{2^{-x}}{\ln 2} - \frac{5^{-x}}{\ln 5} + C Or, expressing axa^{-x} as 1ax\frac{1}{a^x}: =12xln215xln5+C= \frac{1}{2^x \ln 2} - \frac{1}{5^x \ln 5} + C

Explanation of the solution:

  1. Simplify the integrand: Rewrite 2x5x10x\frac{2^x - 5^x}{10^x} as (210)x(510)x\left(\frac{2}{10}\right)^x - \left(\frac{5}{10}\right)^x, which simplifies to (15)x(12)x\left(\frac{1}{5}\right)^x - \left(\frac{1}{2}\right)^x or 5x2x5^{-x} - 2^{-x}.
  2. Integrate term by term: Apply the integral formula akxdx=akxklna+C\int a^{kx} dx = \frac{a^{kx}}{k \ln a} + C to each term.
  3. For 5xdx\int 5^{-x} dx, a=5,k=1a=5, k=-1, yielding 5xln5-\frac{5^{-x}}{\ln 5}.
  4. For 2xdx\int 2^{-x} dx, a=2,k=1a=2, k=-1, yielding 2xln2-\frac{2^{-x}}{\ln 2}.
  5. Combine the results: Subtract the second integral from the first, remembering the minus sign from the original expression. This gives 2xln25xln5+C\frac{2^{-x}}{\ln 2} - \frac{5^{-x}}{\ln 5} + C.
  6. Rewrite using positive exponents: 12xln215xln5+C\frac{1}{2^x \ln 2} - \frac{1}{5^x \ln 5} + C.