Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

(xaxxx+a)dx\int\left(\frac{x-a}{x}-\frac{x}{x+a}\right) dx is equal to

A

logx+ax+C\log\left|\frac{x+a}{x}\right|+C

B

alogx+ax+Ca\log\left|\frac{x+a}{x}\right|+C

C

aa logxx+a+C\log\left|\frac{x}{x+a}\right|+C

D

logxx+a+C\log\left|\frac{x}{x+a}\right|+C

Answer

alogx+ax+Ca\log\left|\frac{x+a}{x}\right|+C

Explanation

Solution

Let I=(xaxxx+a)dxI=\int\left(\frac{x-a}{x}-\frac{x}{x+a}\right) d x

=(x2a2)x2x(x+a)dx=\int \frac{\left(x^{2}-a^{2}\right)-x^{2}}{x(x+a)} d x

=a21x(x+a)dx=-a^{2} \int \frac{1}{x(x+a)} d x

=a2a[1x1x+a]dx=\frac{-a^{2}}{a} \int\left[\frac{1}{x}-\frac{1}{x+a}\right] d x

=alogxx+a+C=-a \log \left|\frac{x}{x+a}\right|+C

=alogx+ax+C=a \log \left|\frac{x+a}{x}\right|+C

So, The correct option is B.