Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

((x2+2)a(x+tan1x)x2+1)dx=\int \left(\frac{\left(x^{2}+2\right)a^{\left(x +tan^{-1}x\right)}}{x^{2}+1}\right)dx =

A

loga.ax+tan1x+clog a.a^{x+tan^{-1}x}+c

B

(x+tan1x)loga+c\frac{\left(x+tan^{-1}x\right)}{log\,a}+c

C

ax+tan1xloga+c\frac{a^{x+tan^{-1}x}}{log\,a}+c

D

loga(x+tan1x)+clog \,a(x + tan^{-1}x) + c

Answer

ax+tan1xloga+c\frac{a^{x+tan^{-1}x}}{log\,a}+c

Explanation

Solution

Let I=(x2+2)a(x+tan1x)x2+1dxI=\int \frac{\left(x^{2}+2\right) a^{\left(x+\tan ^{-1} x\right)}}{x^{2}+1} dx
Put x+tan1x=t x+\tan ^{-1} x=t
(1+11+x2)dx=dt\Rightarrow \left(1+\frac{1}{1+x^{2}}\right) dx=dt
2+x21+x2dx=dt\Rightarrow \frac{2+x^{2}}{1+x^{2}} dx=dt
I=atdt=atloga+c\therefore I =\int a^{t} dt=\frac{a^{t}}{\log a}+c
=ax+tan1xloga+c=\frac{a^{x+\tan ^{-1} x}}{\log a}+c