Solveeit Logo

Question

Mathematics Question on integral

\int\left\\{\frac{\left(log \,x -1\right)}{1+\left(log \,x\right)^{2}}\right\\}^{2}dx is equal to :

A

x(logx)2+1+c\frac{x}{\left(log\,x\right)^{2}+1}+c

B

xex1+x2+c\frac{xe^{x}}{1+x^{2}}+c

C

xx2+1+c\frac{x}{x^{2} +1}+c

D

logx(logx)2+1+c\frac{log\,x}{\left(log\,x\right)^{2} +1}+c

Answer

x(logx)2+1+c\frac{x}{\left(log\,x\right)^{2}+1}+c

Explanation

Solution

Let I=(logx11+(logx)2)2dxI = \int \left(\frac{log\,x-1}{ 1+\left(log\,x\right)^{2}}\right)^{2} dx =(logx)2+12logx(1+(logx)2)2dx= \int \frac{\left(log\,x\right)^{2}+1-2log\,x}{\left(1+\left(log\,x\right)^{2}\right)^{2}}dx =dx1+(logx)22logx(1+(logx)2)2dx= \int \frac{dx}{1+\left(log\,x\right)^{2}}- \int \frac{2log\,x}{\left(1+\left(log\,x\right)^{2}\right)^{2}}dx =x1+(logx)2+2logx(1+(logx)2)2dx= \frac{x}{1+\left(log\,x\right)^{2}}+\int \frac{2log\,x}{\left(1+\left(log\,x\right)^{2}\right)^{2}}dx 2logx(1+(logx)2)2-\int \frac{2log\,x}{\left(1+\left(log\,x\right)^{2}\right)^{2}} =x1+(logx)2+c= \frac{x}{1+\left(log\,x\right)^{2}}+c