Question
Mathematics Question on Integrals of Some Particular Functions
∫(2ex−54e2−25)dx=Ax+Blog∣2ex−5∣+c then
A
A=5, and B=3
B
A=5, and B=−3
C
A=−5, and B=3
D
A=−5, and B=−3
Answer
A=5, and B=−3
Explanation
Solution
Let I=∫(2ex−54ex−25)dx
=∫2ex−54exdx−∫2ex−525dx
=4∫2ex−5exdx−25∫2−5e−xe−xdx
Put 2ex−5=u and 2−5e−x=v
⇒2exdx=du
and 5e−xdx=dv
⇒exdx=2du and e−xdx=5dv
∴I=4∫2udu−25∫5vdu
=2logu−5logv+c
=2log(2ex−5)−5log(2−5e−x)+c
=2log(2ex−5)−5log(ex2ex−5)+c
=2log(2ex−5)−5log(2ex−5)+5logex+c
=−3log(2ex−5)+5x+c
⇒I=5x−3log(2ex−5)+c
But it is given I=Ax+Blog(2ex−5)+c
∴A=5 and B=−3