Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

(4e2252ex5)dx=Ax+Blog2ex5+c\int\left(\frac{4e^{2}-25}{2e^{x}-5}\right)dx = Ax+B \,\,log |2e^{x}-5|+c then

A

A=5 A = 5, and B=3B = 3

B

A=5 A = 5, and B=3B = - 3

C

A=5A = - 5, and B=3B = 3

D

A=5 A = - 5, and B=3B = - 3

Answer

A=5 A = 5, and B=3B = - 3

Explanation

Solution

Let I=(4ex252ex5)dxI=\int\left(\frac{4 e^{x}-25}{2 e^{x}-5}\right) dx
=4ex2ex5dx252ex5dx=\int \frac{4 e^{x}}{2 e^{x}-5} d x-\int \frac{25}{2 e^{x}-5} d x
=4ex2ex5dx25ex25exdx=4 \int \frac{e^{x}}{2 e^{x}-5} d x-25 \int \frac{e^{-x}}{2-5 e^{-x}} d x
Put 2ex5=u2 e^{x}-5=u and 25ex=v2-5 e^{-x}=v
2exdx=du\Rightarrow 2 e^{x} dx=du
and 5exdx=dv5 e^{-x} d x=dv
exdx=du2\Rightarrow e^{x} d x=\frac{du}{2} and exdx=dv5e^{-x} dx=\frac{dv}{5}
I=4du2u25du5v\therefore I=4 \int \frac{du}{2u}-25 \int \frac{du}{5v}
=2logu5logv+c=2 \log u-5 \log v+c
=2log(2ex5)5log(25ex)+c=2 \log \left(2 e^{x}-5\right)-5 \log \left(2-5 e^{-x}\right)+c
=2log(2ex5)5log(2ex5ex)+c=2 \log \left(2 e^{x}-5\right)-5 \log \left(\frac{2 e^{x}-5}{e^{x}}\right)+c
=2log(2ex5)5log(2ex5)+5logex+c=2 \log \left(2 e^{x}-5\right)-5 \log \left(2 e^{x}-5\right)+5 \log e^{x}+c
=3log(2ex5)+5x+c=-3 \log \left(2 e^{x}-5\right)+5x+c
I=5x3log(2ex5)+c\Rightarrow I=5 x-3 \log \left(2 e^{x}-5\right)+c
But it is given I=Ax+Blog(2ex5)+cI=A x+B \log \left(2 e^{x}-5\right)+c
A=5\therefore A=5 and B=3B=-3