Solveeit Logo

Question

Question: $\int \frac{(x^4 - x)^{1/4}}{x^5} dx$ is equal to...

(x4x)1/4x5dx\int \frac{(x^4 - x)^{1/4}}{x^5} dx is equal to

A

415(11x3)5/4+c\frac{4}{15}(1-\frac{1}{x^3})^{5/4}+c

B

45(11x3)5/4+c\frac{4}{5}(1-\frac{1}{x^3})^{5/4}+c

C

415(1+1x3)5/4+c\frac{4}{15}(1+\frac{1}{x^3})^{5/4}+c

D

None of these

Answer

415(11x3)5/4+c\frac{4}{15}(1-\frac{1}{x^3})^{5/4}+c

Explanation

Solution

The integral to evaluate is I=(x4x)1/4x5dxI = \int \frac{(x^4 - x)^{1/4}}{x^5} dx.

We can factor out x4x^4 from the term inside the parenthesis in the numerator: (x4x)1/4=(x4(1xx4))1/4=(x4(11x3))1/4(x^4 - x)^{1/4} = (x^4(1 - \frac{x}{x^4}))^{1/4} = (x^4(1 - \frac{1}{x^3}))^{1/4}.

Using the property (ab)n=anbn(ab)^n = a^n b^n, we get: (x4(11x3))1/4=(x4)1/4(11x3)1/4(x^4(1 - \frac{1}{x^3}))^{1/4} = (x^4)^{1/4} (1 - \frac{1}{x^3})^{1/4}.

For real numbers, (x4)1/4=x(x^4)^{1/4} = |x|.

So the integral becomes I=x(11x3)1/4x5dxI = \int \frac{|x| (1 - \frac{1}{x^3})^{1/4}}{x^5} dx.

For the expression (x4x)1/4(x^4 - x)^{1/4} to be a real number, we must have x4x0x^4 - x \ge 0. x4x=x(x31)=x(x1)(x2+x+1)x^4 - x = x(x^3 - 1) = x(x-1)(x^2+x+1). The quadratic factor x2+x+1=(x+1/2)2+3/4x^2+x+1 = (x + 1/2)^2 + 3/4 is always positive. So x(x1)(x2+x+1)0x(x-1)(x^2+x+1) \ge 0 implies x(x1)0x(x-1) \ge 0. This inequality holds for x0x \le 0 or x1x \ge 1.

Let's consider the case where x1x \ge 1. In this case, x>0x > 0, so x=x|x| = x. The integral becomes I=x(11x3)1/4x5dx=(11x3)1/4x4dxI = \int \frac{x (1 - \frac{1}{x^3})^{1/4}}{x^5} dx = \int \frac{(1 - \frac{1}{x^3})^{1/4}}{x^4} dx. Let u=11x3u = 1 - \frac{1}{x^3}. Then du=ddx(1x3)dx=(0(3)x4)dx=3x4dx=3x4dxdu = \frac{d}{dx}(1 - x^{-3}) dx = (0 - (-3)x^{-4}) dx = 3x^{-4} dx = \frac{3}{x^4} dx. So, 1x4dx=13du\frac{1}{x^4} dx = \frac{1}{3} du. Substituting this into the integral: I=u1/413du=13u1/4duI = \int u^{1/4} \cdot \frac{1}{3} du = \frac{1}{3} \int u^{1/4} du. Using the power rule for integration, undu=un+1n+1+C\int u^n du = \frac{u^{n+1}}{n+1} + C (for n1n \neq -1): I=13u1/4+11/4+1+C=13u5/45/4+CI = \frac{1}{3} \frac{u^{1/4 + 1}}{1/4 + 1} + C = \frac{1}{3} \cdot \frac{u^{5/4}}{5/4} + C. I=1345u5/4+C=415u5/4+CI = \frac{1}{3} \cdot \frac{4}{5} u^{5/4} + C = \frac{4}{15} u^{5/4} + C. Substitute back u=11x3u = 1 - \frac{1}{x^3}: I=415(11x3)5/4+CI = \frac{4}{15} (1 - \frac{1}{x^3})^{5/4} + C. This result is valid for x1x \ge 1.