Solveeit Logo

Question

Question: $\int \frac{x^3}{\sqrt{x^2+2}} dx =$...

x3x2+2dx=\int \frac{x^3}{\sqrt{x^2+2}} dx =

Answer

13(x24)x2+2+C\frac{1}{3} (x^2-4) \sqrt{x^2+2} + C

Explanation

Solution

To solve the integral x3x2+2dx\int \frac{x^3}{\sqrt{x^2+2}} dx, we use substitution.

  1. Substitution: Let u=x2+2u = x^2 + 2, then du=2xdxdu = 2x \, dx and x2=u2x^2 = u - 2.

  2. Rewrite the integral: x3x2+2dx=x2xx2+2dx=(u2)u12du=12u2udu\int \frac{x^3}{\sqrt{x^2+2}} dx = \int \frac{x^2 \cdot x}{\sqrt{x^2+2}} dx = \int \frac{(u-2)}{\sqrt{u}} \cdot \frac{1}{2} du = \frac{1}{2} \int \frac{u-2}{\sqrt{u}} du

  3. Simplify: 12u2udu=12(u1/22u1/2)du\frac{1}{2} \int \frac{u-2}{\sqrt{u}} du = \frac{1}{2} \int (u^{1/2} - 2u^{-1/2}) du

  4. Integrate: 12(u1/22u1/2)du=12(23u3/24u1/2)+C=13u3/22u1/2+C\frac{1}{2} \int (u^{1/2} - 2u^{-1/2}) du = \frac{1}{2} \left( \frac{2}{3}u^{3/2} - 4u^{1/2} \right) + C = \frac{1}{3}u^{3/2} - 2u^{1/2} + C

  5. Substitute back: 13u3/22u1/2+C=13(x2+2)3/22(x2+2)1/2+C\frac{1}{3}u^{3/2} - 2u^{1/2} + C = \frac{1}{3}(x^2+2)^{3/2} - 2(x^2+2)^{1/2} + C

  6. Factor and simplify: 13(x2+2)3/22(x2+2)1/2+C=(x2+2)1/2[13(x2+2)2]+C=x2+2[x2+263]+C=13(x24)x2+2+C\frac{1}{3}(x^2+2)^{3/2} - 2(x^2+2)^{1/2} + C = (x^2+2)^{1/2} \left[ \frac{1}{3}(x^2+2) - 2 \right] + C = \sqrt{x^2+2} \left[ \frac{x^2+2-6}{3} \right] + C = \frac{1}{3}(x^2-4)\sqrt{x^2+2} + C

Thus, the integral evaluates to 13(x24)x2+2+C\frac{1}{3} (x^2-4) \sqrt{x^2+2} + C.