Question
Question: $\int \frac{x^3}{\sqrt{x^2+2}} dx =$...
∫x2+2x3dx=

Answer
31(x2−4)x2+2+C
Explanation
Solution
To solve the integral ∫x2+2x3dx, we use substitution.
-
Substitution: Let u=x2+2, then du=2xdx and x2=u−2.
-
Rewrite the integral: ∫x2+2x3dx=∫x2+2x2⋅xdx=∫u(u−2)⋅21du=21∫uu−2du
-
Simplify: 21∫uu−2du=21∫(u1/2−2u−1/2)du
-
Integrate: 21∫(u1/2−2u−1/2)du=21(32u3/2−4u1/2)+C=31u3/2−2u1/2+C
-
Substitute back: 31u3/2−2u1/2+C=31(x2+2)3/2−2(x2+2)1/2+C
-
Factor and simplify: 31(x2+2)3/2−2(x2+2)1/2+C=(x2+2)1/2[31(x2+2)−2]+C=x2+2[3x2+2−6]+C=31(x2−4)x2+2+C
Thus, the integral evaluates to 31(x2−4)x2+2+C.