Solveeit Logo

Question

Question: $\int \frac{x^2 + 2x}{x^2 + 2x + 1} dx$...

x2+2xx2+2x+1dx\int \frac{x^2 + 2x}{x^2 + 2x + 1} dx

Answer

x+1x+1+Cx + \frac{1}{x+1} + C

Explanation

Solution

Solution:

Notice that

x2+2x=(x+1)21.x^2 + 2x = (x+1)^2 - 1.

Thus,

x2+2xx2+2x+1=(x+1)21(x+1)2=11(x+1)2.\frac{x^2 + 2x}{x^2 + 2x + 1} = \frac{(x+1)^2 - 1}{(x+1)^2} = 1 - \frac{1}{(x+1)^2}.

The integral becomes:

(11(x+1)2)dx=1dx1(x+1)2dx.\int \left(1 - \frac{1}{(x+1)^2}\right) dx = \int 1\, dx - \int \frac{1}{(x+1)^2}\, dx.

Integrate each part:

1dx=x,\int 1\, dx = x,

and letting u=x+1u=x+1 (so du=dxdu=dx):

1(x+1)2dx=1u2du=1u=1x+1.\int \frac{1}{(x+1)^2}\,dx = \int \frac{1}{u^2}\,du = -\frac{1}{u} = -\frac{1}{x+1}.

Thus, the integral is:

x(1x+1)=x+1x+1+C.x - \left(-\frac{1}{x+1}\right) = x + \frac{1}{x+1} + C.

Explanation (minimal):

Rewrite numerator as (x+1)21(x+1)^2-1. Split into 11(x+1)21 - \frac{1}{(x+1)^2} and integrate term by term.