Question
Question: $\int \frac{x^2 + 2x}{x^2 + 2x + 1} dx$...
∫x2+2x+1x2+2xdx
Answer
x+x+11+C
Explanation
Solution
Solution:
Notice that
x2+2x=(x+1)2−1.Thus,
x2+2x+1x2+2x=(x+1)2(x+1)2−1=1−(x+1)21.The integral becomes:
∫(1−(x+1)21)dx=∫1dx−∫(x+1)21dx.Integrate each part:
∫1dx=x,and letting u=x+1 (so du=dx):
∫(x+1)21dx=∫u21du=−u1=−x+11.Thus, the integral is:
x−(−x+11)=x+x+11+C.Explanation (minimal):
Rewrite numerator as (x+1)2−1. Split into 1−(x+1)21 and integrate term by term.