Solveeit Logo

Question

Question: $\int \frac{\sqrt{x+1}+\sqrt{x}}{dx}$...

x+1+xdx\int \frac{\sqrt{x+1}+\sqrt{x}}{dx}

Answer

23(x+1)3/2+23x3/2+C\frac{2}{3}(x+1)^{3/2} + \frac{2}{3}x^{3/2} + C

Explanation

Solution

The problem asks to evaluate the indefinite integral of the sum of two square root functions.

We need to evaluate (x+1+x)dx\int (\sqrt{x+1}+\sqrt{x})dx.

Using the linearity property of integrals, we can split this into two separate integrals:

(x+1+x)dx=x+1dx+xdx\int (\sqrt{x+1}+\sqrt{x})dx = \int \sqrt{x+1}dx + \int \sqrt{x}dx

Now, let's evaluate each integral:

  1. For xdx\int \sqrt{x}dx:
    Rewrite x\sqrt{x} as x1/2x^{1/2}.
    Using the power rule for integration, undu=un+1n+1+C\int u^n du = \frac{u^{n+1}}{n+1} + C:

    x1/2dx=x1/2+11/2+1+C1=x3/23/2+C1=23x3/2+C1\int x^{1/2}dx = \frac{x^{1/2+1}}{1/2+1} + C_1 = \frac{x^{3/2}}{3/2} + C_1 = \frac{2}{3}x^{3/2} + C_1
  2. For x+1dx\int \sqrt{x+1}dx:
    Rewrite x+1\sqrt{x+1} as (x+1)1/2(x+1)^{1/2}.
    This is of the form (ax+b)ndx\int (ax+b)^n dx. For a=1a=1, b=1b=1, and n=1/2n=1/2, we use the generalized power rule: (ax+b)ndx=(ax+b)n+1a(n+1)+C\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C.

    (x+1)1/2dx=(x+1)1/2+11(1/2+1)+C2=(x+1)3/23/2+C2=23(x+1)3/2+C2\int (x+1)^{1/2}dx = \frac{(x+1)^{1/2+1}}{1 \cdot (1/2+1)} + C_2 = \frac{(x+1)^{3/2}}{3/2} + C_2 = \frac{2}{3}(x+1)^{3/2} + C_2

Combining the results from both integrals:

(x+1+x)dx=23(x+1)3/2+23x3/2+C\int (\sqrt{x+1}+\sqrt{x})dx = \frac{2}{3}(x+1)^{3/2} + \frac{2}{3}x^{3/2} + C

where C=C1+C2C = C_1 + C_2 is the constant of integration.