Question
Question: $\int \frac{(\sqrt{x}+1)dx}{\sqrt{x}(\sqrt[3]{x}+1)}$...
∫x(3x+1)(x+1)dx
Answer
\frac{3}{2}x^{2/3}-3x^{1/3}+6x^{1/6}+3\ln\Bigl|x^{1/3}+1\Bigr|-6\arctan\Bigl(x^{1/6}\Bigr)+C.
Explanation
Solution
Solution Explanation
We wish to evaluate
I=∫x(3x+1)(x+1)dx.Step 1. Make the substitution
t=x1/6⇒x=t6,dx=6t5dt.Note that
x=x1/2=t3,3x=x1/3=t2.Step 2. Rewrite the integrand in terms of t:
I=∫t3(t2+1)(t3+1)(6t5dt)=6∫t3(t2+1)t5(t3+1)dt=6∫t2+1t2(t3+1)dt.Step 3. Write the numerator:
t2(t3+1)=t5+t2.We now divide t5+t2 by t2+1 using polynomial long division.
Divide: t5+t2 by t2+1
• First, t5÷t2=t3. Multiply: t3(t2+1)=t5+t3. Subtract:
(t5+t2)−(t5+t3)=−t3+t2.• Next, −t3÷t2=−t. Multiply: −t(t2+1)=−t3−t. Subtract:
(−t3+t2)−(−t3−t)=t2+t.• Then, t2÷t2=1. Multiply: 1⋅(t2+1)=t2+1. Subtract:
(t2+t)−(t2+1)=t−1.Thus,
t2+1t5+t2=t3−t+1+t2+1t−1.Step 4. Express the integral as
I=6∫[t3−t+1+t2+1t−1]dt.Integrate term‑by‑term:
• ∫t3dt=4t4.
• ∫(−t)dt=−2t2.
• ∫1dt=t.
• For ∫t2+1t−1dt, break it as
∫t2+1tdt−∫t2+11dt.Now,
∫t2+1tdt=21ln∣t2+1∣,∫t2+11dt=arctant.Thus,
∫t2+1t−1dt=21ln∣t2+1∣−arctant.Step 5. Collecting results, we have:
I=6[4t4−2t2+t+21ln∣t2+1∣−arctant]+C.Simplify:
I=23t4−3t2+6t+3ln∣t2+1∣−6arctant+C.Recall that t=x1/6, so:
t4=x4/6=x2/3,t2=x2/6=x1/3,t=x1/6.Thus the answer is:
I=23x2/3−3x1/3+6x1/6+3lnx1/3+1−6arctan(x1/6)+C.Answer
23x2/3−3x1/3+6x1/6+3lnx1/3+1−6arctan(x1/6)+C.