Solveeit Logo

Question

Question: $\int \frac{\sqrt[3]{x^2}+\sqrt[6]{x}}{x(1+\sqrt[3]{x})} dx =$...

x23+x6x(1+x3)dx=\int \frac{\sqrt[3]{x^2}+\sqrt[6]{x}}{x(1+\sqrt[3]{x})} dx =

Answer

6\sqrt[6]{x} + \ln|x| - 3\ln(1+\sqrt[3]{x}) - 6\arctan(\sqrt[6]{x}) + C

Explanation

Solution

To evaluate the integral x23+x6x(1+x3)dx\int \frac{\sqrt[3]{x^2}+\sqrt[6]{x}}{x(1+\sqrt[3]{x})} dx, we first rewrite the terms using fractional exponents:

x23=x2/3\sqrt[3]{x^2} = x^{2/3}

x6=x1/6\sqrt[6]{x} = x^{1/6}

x3=x1/3\sqrt[3]{x} = x^{1/3}

The integral becomes:

x2/3+x1/6x(1+x1/3)dx\int \frac{x^{2/3} + x^{1/6}}{x(1+x^{1/3})} dx

To eliminate the fractional exponents, we make a substitution. The least common multiple (LCM) of the denominators of the exponents (3, 6, 1, 3) is 6.

Let x=t6x = t^6. Then, dx=6t5dtdx = 6t^5 dt.

Substitute x=t6x=t^6 into the integral:

x2/3=(t6)2/3=t4x^{2/3} = (t^6)^{2/3} = t^4

x1/6=(t6)1/6=tx^{1/6} = (t^6)^{1/6} = t

x1/3=(t6)1/3=t2x^{1/3} = (t^6)^{1/3} = t^2

The integral transforms to:

t4+tt6(1+t2)(6t5dt)\int \frac{t^4 + t}{t^6(1+t^2)} (6t^5 dt)

Factor out tt from the numerator and simplify:

=t(t3+1)t6(1+t2)(6t5dt)= \int \frac{t(t^3 + 1)}{t^6(1+t^2)} (6t^5 dt)

Cancel t5t^5 from t6t^6 in the denominator and tt from the numerator:

=t(t3+1)t(1+t2)(6dt)= \int \frac{t(t^3 + 1)}{t(1+t^2)} (6 dt)

=6(t3+1)t(1+t2)dt= \int \frac{6(t^3 + 1)}{t(1+t^2)} dt

The integrand is a rational function. The degree of the numerator (t3t^3) is equal to the degree of the denominator (t(1+t2)=t3+tt(1+t^2) = t^3+t). Perform polynomial long division:

6t3+6t3+t=6(t3+t)6t+6t3+t=6+66tt3+t\frac{6t^3+6}{t^3+t} = \frac{6(t^3+t) - 6t + 6}{t^3+t} = 6 + \frac{6-6t}{t^3+t}

So the integral becomes:

(6+66tt(1+t2))dt=6dt+66tt(1+t2)dt=6t+66tt(1+t2)dt\int \left( 6 + \frac{6-6t}{t(1+t^2)} \right) dt = \int 6 dt + \int \frac{6-6t}{t(1+t^2)} dt = 6t + \int \frac{6-6t}{t(1+t^2)} dt

Now, we decompose the remaining fraction 66tt(1+t2)\frac{6-6t}{t(1+t^2)} into partial fractions:

66tt(1+t2)=At+Bt+C1+t2\frac{6-6t}{t(1+t^2)} = \frac{A}{t} + \frac{Bt+C}{1+t^2}

Multiply both sides by t(1+t2)t(1+t^2):

66t=A(1+t2)+(Bt+C)t6-6t = A(1+t^2) + (Bt+C)t

66t=A+At2+Bt2+Ct6-6t = A + At^2 + Bt^2 + Ct

66t=(A+B)t2+Ct+A6-6t = (A+B)t^2 + Ct + A

Comparing coefficients:

Constant term: A=6A = 6

Coefficient of tt: C=6C = -6

Coefficient of t2t^2: A+B=0    6+B=0    B=6A+B = 0 \implies 6+B=0 \implies B=-6

Substitute these values back into the partial fraction form:

66tt(1+t2)=6t+6t61+t2=6t6t1+t261+t2\frac{6-6t}{t(1+t^2)} = \frac{6}{t} + \frac{-6t-6}{1+t^2} = \frac{6}{t} - \frac{6t}{1+t^2} - \frac{6}{1+t^2}

Now, integrate each term:

(6t6t1+t261+t2)dt=61tdt6t1+t2dt611+t2dt\int \left( \frac{6}{t} - \frac{6t}{1+t^2} - \frac{6}{1+t^2} \right) dt = 6 \int \frac{1}{t} dt - 6 \int \frac{t}{1+t^2} dt - 6 \int \frac{1}{1+t^2} dt

=6lnt3ln(1+t2)6arctan(t)+C= 6 \ln|t| - 3 \ln(1+t^2) - 6 \arctan(t) + C'

(For t1+t2dt\int \frac{t}{1+t^2} dt, use substitution u=1+t2u=1+t^2, so du=2tdtdu=2t dt, which gives 12udu=12lnu=12ln(1+t2)\int \frac{1}{2u} du = \frac{1}{2}\ln|u| = \frac{1}{2}\ln(1+t^2).)

Combine all parts of the integral:

6t+6lnt3ln(1+t2)6arctan(t)+C6t + 6 \ln|t| - 3 \ln(1+t^2) - 6 \arctan(t) + C

Finally, substitute back t=x1/6t = x^{1/6}. Note that t2=(x1/6)2=x2/6=x1/3t^2 = (x^{1/6})^2 = x^{2/6} = x^{1/3}.

6x1/6+6lnx1/63ln(1+x1/3)6arctan(x1/6)+C6x^{1/6} + 6 \ln|x^{1/6}| - 3 \ln(1+x^{1/3}) - 6 \arctan(x^{1/6}) + C

Using logarithm property nlna=lnann \ln a = \ln a^n:

6x1/6+ln(x6×1/6)3ln(1+x1/3)6arctan(x1/6)+C6x^{1/6} + \ln(x^{6 \times 1/6}) - 3 \ln(1+x^{1/3}) - 6 \arctan(x^{1/6}) + C

6x1/6+lnx3ln(1+x1/3)6arctan(x1/6)+C6x^{1/6} + \ln|x| - 3 \ln(1+x^{1/3}) - 6 \arctan(x^{1/6}) + C

In radical notation:

6x6+lnx3ln(1+x3)6arctan(x6)+C6\sqrt[6]{x} + \ln|x| - 3\ln(1+\sqrt[3]{x}) - 6\arctan(\sqrt[6]{x}) + C

The final answer is 6x6+lnx3ln(1+x3)6arctan(x6)+C6\sqrt[6]{x} + \ln|x| - 3\ln(1+\sqrt[3]{x}) - 6\arctan(\sqrt[6]{x}) + C.