Question
Question: $\int \frac{\sqrt[3]{x^2}+\sqrt[6]{x}}{x(1+\sqrt[3]{x})} dx =$...
∫x(1+3x)3x2+6xdx=

6\sqrt[6]{x} + \ln|x| - 3\ln(1+\sqrt[3]{x}) - 6\arctan(\sqrt[6]{x}) + C
Solution
To evaluate the integral ∫x(1+3x)3x2+6xdx, we first rewrite the terms using fractional exponents:
3x2=x2/3
6x=x1/6
3x=x1/3
The integral becomes:
∫x(1+x1/3)x2/3+x1/6dx
To eliminate the fractional exponents, we make a substitution. The least common multiple (LCM) of the denominators of the exponents (3, 6, 1, 3) is 6.
Let x=t6. Then, dx=6t5dt.
Substitute x=t6 into the integral:
x2/3=(t6)2/3=t4
x1/6=(t6)1/6=t
x1/3=(t6)1/3=t2
The integral transforms to:
∫t6(1+t2)t4+t(6t5dt)
Factor out t from the numerator and simplify:
=∫t6(1+t2)t(t3+1)(6t5dt)
Cancel t5 from t6 in the denominator and t from the numerator:
=∫t(1+t2)t(t3+1)(6dt)
=∫t(1+t2)6(t3+1)dt
The integrand is a rational function. The degree of the numerator (t3) is equal to the degree of the denominator (t(1+t2)=t3+t). Perform polynomial long division:
t3+t6t3+6=t3+t6(t3+t)−6t+6=6+t3+t6−6t
So the integral becomes:
∫(6+t(1+t2)6−6t)dt=∫6dt+∫t(1+t2)6−6tdt=6t+∫t(1+t2)6−6tdt
Now, we decompose the remaining fraction t(1+t2)6−6t into partial fractions:
t(1+t2)6−6t=tA+1+t2Bt+C
Multiply both sides by t(1+t2):
6−6t=A(1+t2)+(Bt+C)t
6−6t=A+At2+Bt2+Ct
6−6t=(A+B)t2+Ct+A
Comparing coefficients:
Constant term: A=6
Coefficient of t: C=−6
Coefficient of t2: A+B=0⟹6+B=0⟹B=−6
Substitute these values back into the partial fraction form:
t(1+t2)6−6t=t6+1+t2−6t−6=t6−1+t26t−1+t26
Now, integrate each term:
∫(t6−1+t26t−1+t26)dt=6∫t1dt−6∫1+t2tdt−6∫1+t21dt
=6ln∣t∣−3ln(1+t2)−6arctan(t)+C′
(For ∫1+t2tdt, use substitution u=1+t2, so du=2tdt, which gives ∫2u1du=21ln∣u∣=21ln(1+t2).)
Combine all parts of the integral:
6t+6ln∣t∣−3ln(1+t2)−6arctan(t)+C
Finally, substitute back t=x1/6. Note that t2=(x1/6)2=x2/6=x1/3.
6x1/6+6ln∣x1/6∣−3ln(1+x1/3)−6arctan(x1/6)+C
Using logarithm property nlna=lnan:
6x1/6+ln(x6×1/6)−3ln(1+x1/3)−6arctan(x1/6)+C
6x1/6+ln∣x∣−3ln(1+x1/3)−6arctan(x1/6)+C
In radical notation:
66x+ln∣x∣−3ln(1+3x)−6arctan(6x)+C
The final answer is 66x+ln∣x∣−3ln(1+3x)−6arctan(6x)+C.