Solveeit Logo

Question

Question: $\int \frac{sinx}{sinx+cosx}dx$...

sinxsinx+cosxdx\int \frac{sinx}{sinx+cosx}dx

Answer

12x12lnsinx+cosx+C\frac{1}{2}x - \frac{1}{2}\ln|\sin x + \cos x| + C

Explanation

Solution

To solve the integral sinxsinx+cosxdx\int \frac{\sin x}{\sin x+\cos x}dx, we use the technique of expressing the numerator as a linear combination of the denominator and its derivative.

Let the given integral be II. I=sinxsinx+cosxdxI = \int \frac{\sin x}{\sin x+\cos x}dx

Let N(x)=sinxN(x) = \sin x (numerator) and D(x)=sinx+cosxD(x) = \sin x + \cos x (denominator). The derivative of the denominator is D(x)=cosxsinxD'(x) = \cos x - \sin x.

We aim to write the numerator N(x)N(x) in the form AD(x)+BD(x)A \cdot D(x) + B \cdot D'(x), where AA and BB are constants. So, sinx=A(sinx+cosx)+B(cosxsinx)\sin x = A(\sin x + \cos x) + B(\cos x - \sin x). Expand the right side: sinx=Asinx+Acosx+BcosxBsinx\sin x = A\sin x + A\cos x + B\cos x - B\sin x Group terms by sinx\sin x and cosx\cos x: sinx=(AB)sinx+(A+B)cosx\sin x = (A-B)\sin x + (A+B)\cos x

By comparing the coefficients of sinx\sin x and cosx\cos x on both sides:

  1. Coefficient of sinx\sin x: 1=AB1 = A-B
  2. Coefficient of cosx\cos x: 0=A+B0 = A+B

From equation (2), we get A=BA = -B. Substitute A=BA = -B into equation (1): 1=(B)B1 = (-B) - B 1=2B1 = -2B B=12B = -\frac{1}{2}

Now find AA: A=B=(12)=12A = -B = -(-\frac{1}{2}) = \frac{1}{2}

So, we can write sinx\sin x as: sinx=12(sinx+cosx)12(cosxsinx)\sin x = \frac{1}{2}(\sin x + \cos x) - \frac{1}{2}(\cos x - \sin x)

Substitute this expression back into the integral: I=12(sinx+cosx)12(cosxsinx)sinx+cosxdxI = \int \frac{\frac{1}{2}(\sin x + \cos x) - \frac{1}{2}(\cos x - \sin x)}{\sin x+\cos x}dx Split the integral into two parts: I=(12(sinx+cosx)sinx+cosx12(cosxsinx)sinx+cosx)dxI = \int \left( \frac{\frac{1}{2}(\sin x + \cos x)}{\sin x+\cos x} - \frac{\frac{1}{2}(\cos x - \sin x)}{\sin x+\cos x} \right) dx I=(1212cosxsinxsinx+cosx)dxI = \int \left( \frac{1}{2} - \frac{1}{2} \frac{\cos x - \sin x}{\sin x+\cos x} \right) dx

Now, integrate each term separately: I=12dx12cosxsinxsinx+cosxdxI = \frac{1}{2} \int dx - \frac{1}{2} \int \frac{\cos x - \sin x}{\sin x+\cos x} dx

The first part is straightforward: 12dx=12x\frac{1}{2} \int dx = \frac{1}{2}x

For the second part, let u=sinx+cosxu = \sin x + \cos x. Then, differentiate uu with respect to xx: du=(cosxsinx)dxdu = (\cos x - \sin x) dx. So the second integral becomes: duu=lnu+C1=lnsinx+cosx+C1\int \frac{du}{u} = \ln|u| + C_1 = \ln|\sin x + \cos x| + C_1

Combining both parts, we get the final result: I=12x12lnsinx+cosx+CI = \frac{1}{2}x - \frac{1}{2} \ln|\sin x + \cos x| + C

The constant of integration CC is added at the end.

Explanation of the solution: The integral sinxsinx+cosxdx\int \frac{\sin x}{\sin x+\cos x}dx is solved by expressing the numerator sinx\sin x as A(sinx+cosx)+B(cosxsinx)A(\sin x+\cos x) + B(\cos x-\sin x). Comparing coefficients yields A=1/2A=1/2 and B=1/2B=-1/2. Substituting this back, the integral splits into 12dx12cosxsinxsinx+cosxdx\int \frac{1}{2} dx - \int \frac{1}{2} \frac{\cos x-\sin x}{\sin x+\cos x} dx. The first part integrates to 12x\frac{1}{2}x. The second part is of the form f(x)f(x)dx\int \frac{f'(x)}{f(x)} dx, which integrates to lnf(x)\ln|f(x)|. Thus, the solution is 12x12lnsinx+cosx+C\frac{1}{2}x - \frac{1}{2}\ln|\sin x + \cos x| + C.