Question
Question: $\int \frac{sinx}{sinx+cosx}dx$...
∫sinx+cosxsinxdx

21x−21ln∣sinx+cosx∣+C
Solution
To solve the integral ∫sinx+cosxsinxdx, we use the technique of expressing the numerator as a linear combination of the denominator and its derivative.
Let the given integral be I. I=∫sinx+cosxsinxdx
Let N(x)=sinx (numerator) and D(x)=sinx+cosx (denominator). The derivative of the denominator is D′(x)=cosx−sinx.
We aim to write the numerator N(x) in the form A⋅D(x)+B⋅D′(x), where A and B are constants. So, sinx=A(sinx+cosx)+B(cosx−sinx). Expand the right side: sinx=Asinx+Acosx+Bcosx−Bsinx Group terms by sinx and cosx: sinx=(A−B)sinx+(A+B)cosx
By comparing the coefficients of sinx and cosx on both sides:
- Coefficient of sinx: 1=A−B
- Coefficient of cosx: 0=A+B
From equation (2), we get A=−B. Substitute A=−B into equation (1): 1=(−B)−B 1=−2B B=−21
Now find A: A=−B=−(−21)=21
So, we can write sinx as: sinx=21(sinx+cosx)−21(cosx−sinx)
Substitute this expression back into the integral: I=∫sinx+cosx21(sinx+cosx)−21(cosx−sinx)dx Split the integral into two parts: I=∫(sinx+cosx21(sinx+cosx)−sinx+cosx21(cosx−sinx))dx I=∫(21−21sinx+cosxcosx−sinx)dx
Now, integrate each term separately: I=21∫dx−21∫sinx+cosxcosx−sinxdx
The first part is straightforward: 21∫dx=21x
For the second part, let u=sinx+cosx. Then, differentiate u with respect to x: du=(cosx−sinx)dx. So the second integral becomes: ∫udu=ln∣u∣+C1=ln∣sinx+cosx∣+C1
Combining both parts, we get the final result: I=21x−21ln∣sinx+cosx∣+C
The constant of integration C is added at the end.
Explanation of the solution: The integral ∫sinx+cosxsinxdx is solved by expressing the numerator sinx as A(sinx+cosx)+B(cosx−sinx). Comparing coefficients yields A=1/2 and B=−1/2. Substituting this back, the integral splits into ∫21dx−∫21sinx+cosxcosx−sinxdx. The first part integrates to 21x. The second part is of the form ∫f(x)f′(x)dx, which integrates to ln∣f(x)∣. Thus, the solution is 21x−21ln∣sinx+cosx∣+C.