Solveeit Logo

Question

Question: $\int (\frac{sinx+sin2x+sin3x}{cosx+cos2x+cos3x})^2dx$...

(sinx+sin2x+sin3xcosx+cos2x+cos3x)2dx\int (\frac{sinx+sin2x+sin3x}{cosx+cos2x+cos3x})^2dx

Answer

12tan(2x)x+C\frac{1}{2}\tan(2x) - x + C

Explanation

Solution

The problem asks to evaluate the integral (sinx+sin2x+sin3xcosx+cos2x+cos3x)2dx\int (\frac{\sin x+\sin 2x+\sin 3x}{\cos x+\cos 2x+\cos 3x})^2dx.

Step 1: Simplify the trigonometric expression inside the integral. The expression is E=sinx+sin2x+sin3xcosx+cos2x+cos3xE = \frac{\sin x+\sin 2x+\sin 3x}{\cos x+\cos 2x+\cos 3x}. We can rearrange the terms in the numerator and denominator and use the sum-to-product trigonometric identities: sinA+sinB=2sin(A+B2)cos(AB2)\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2 \cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right)

Numerator: sinx+sin2x+sin3x=(sinx+sin3x)+sin2x\sin x + \sin 2x + \sin 3x = (\sin x + \sin 3x) + \sin 2x =2sin(x+3x2)cos(x3x2)+sin2x= 2 \sin\left(\frac{x+3x}{2}\right)\cos\left(\frac{x-3x}{2}\right) + \sin 2x =2sin(2x)cos(x)+sin2x= 2 \sin(2x)\cos(-x) + \sin 2x =2sin(2x)cosx+sin2x= 2 \sin(2x)\cos x + \sin 2x (since cos(x)=cosx\cos(-x) = \cos x) =sin2x(2cosx+1)= \sin 2x (2\cos x + 1)

Denominator: cosx+cos2x+cos3x=(cosx+cos3x)+cos2x\cos x + \cos 2x + \cos 3x = (\cos x + \cos 3x) + \cos 2x =2cos(x+3x2)cos(x3x2)+cos2x= 2 \cos\left(\frac{x+3x}{2}\right)\cos\left(\frac{x-3x}{2}\right) + \cos 2x =2cos(2x)cos(x)+cos2x= 2 \cos(2x)\cos(-x) + \cos 2x =2cos(2x)cosx+cos2x= 2 \cos(2x)\cos x + \cos 2x =cos2x(2cosx+1)= \cos 2x (2\cos x + 1)

Now, substitute these back into the expression EE: E=sin2x(2cosx+1)cos2x(2cosx+1)E = \frac{\sin 2x (2\cos x + 1)}{\cos 2x (2\cos x + 1)} Assuming 2cosx+102\cos x + 1 \neq 0, we can cancel the common term (2cosx+1)(2\cos x + 1): E=sin2xcos2x=tan2xE = \frac{\sin 2x}{\cos 2x} = \tan 2x

Step 2: Integrate the simplified expression. The integral becomes: I=(tan2x)2dx=tan2(2x)dxI = \int (\tan 2x)^2 dx = \int \tan^2(2x) dx

We use the trigonometric identity tan2θ=sec2θ1\tan^2 \theta = \sec^2 \theta - 1: I=(sec2(2x)1)dxI = \int (\sec^2(2x) - 1) dx

Now, integrate term by term: I=sec2(2x)dx1dxI = \int \sec^2(2x) dx - \int 1 dx

For the first integral, sec2(2x)dx\int \sec^2(2x) dx, we use a substitution. Let u=2xu = 2x, so du=2dxdu = 2 dx, which means dx=12dudx = \frac{1}{2} du. sec2(2x)dx=sec2(u)12du=12sec2(u)du\int \sec^2(2x) dx = \int \sec^2(u) \frac{1}{2} du = \frac{1}{2} \int \sec^2(u) du We know that sec2udu=tanu+C\int \sec^2 u du = \tan u + C. So, 12tanu+C=12tan(2x)+C1\frac{1}{2} \tan u + C = \frac{1}{2} \tan(2x) + C_1.

For the second integral, 1dx=x+C2\int 1 dx = x + C_2.

Combining the results: I=12tan(2x)x+CI = \frac{1}{2} \tan(2x) - x + C where C=C1+C2C = C_1 + C_2 is the constant of integration.

The final answer is 12tan(2x)x+C\boxed{\frac{1}{2}\tan(2x) - x + C}.

Explanation of the solution:

  1. Simplify the integrand: Use sum-to-product formulas for trigonometric functions to simplify the numerator and denominator. sinx+sin3x=2sin(2x)cosx\sin x + \sin 3x = 2\sin(2x)\cos x cosx+cos3x=2cos(2x)cosx\cos x + \cos 3x = 2\cos(2x)\cos x This leads to sin2x(2cosx+1)cos2x(2cosx+1)=tan2x\frac{\sin 2x(2\cos x+1)}{\cos 2x(2\cos x+1)} = \tan 2x.
  2. Rewrite the integral: The integral becomes tan2(2x)dx\int \tan^2(2x) dx.
  3. Apply trigonometric identity: Use tan2θ=sec2θ1\tan^2 \theta = \sec^2 \theta - 1 to rewrite the integrand as sec2(2x)1\sec^2(2x) - 1.
  4. Integrate: Integrate term by term. sec2(2x)dx=12tan(2x)\int \sec^2(2x) dx = \frac{1}{2}\tan(2x) (using substitution u=2xu=2x). 1dx=x\int 1 dx = x.
  5. Combine results: The final integral is 12tan(2x)x+C\frac{1}{2}\tan(2x) - x + C.

Answer:

The integral is 12tan(2x)x+C\frac{1}{2}\tan(2x) - x + C.