Solveeit Logo

Question

Question: $\int \frac{sin\sqrt{x}}{\sqrt{x}} dx$...

sinxxdx\int \frac{sin\sqrt{x}}{\sqrt{x}} dx

Answer

-2cos(√(x)) + C

Explanation

Solution

Solution:

Let

u=xx=u2anddx=2udu.u = \sqrt{x} \quad \Rightarrow \quad x = u^2 \quad \text{and} \quad dx = 2u\, du.

Substitute into the integral:

sinxxdx=sinuu(2udu)=2sinudu.\int \frac{\sin \sqrt{x}}{\sqrt{x}}\,dx = \int \frac{\sin u}{u} \cdot (2u\,du) = 2\int \sin u\,du.

Now, integrate:

2sinudu=2(cosu)+C=2cosu+C.2\int \sin u\,du = 2(-\cos u) + C = -2\cos u + C.

Replacing back u=xu = \sqrt{x}:

2cos(x)+C.-2\cos(\sqrt{x}) + C.

Explanation:

Use substitution u=xu = \sqrt{x} to transform the integral into 2sinudu2\int \sin u\,du which integrates to 2cosu+C-2\cos u + C. Finally, revert back to xx.