Question
Question: $\int \frac{sin\sqrt{x}}{\sqrt{x}} dx$...
∫xsinxdx
Answer
-2cos(√(x)) + C
Explanation
Solution
Solution:
Let
u=x⇒x=u2anddx=2udu.Substitute into the integral:
∫xsinxdx=∫usinu⋅(2udu)=2∫sinudu.Now, integrate:
2∫sinudu=2(−cosu)+C=−2cosu+C.Replacing back u=x:
−2cos(x)+C.Explanation:
Use substitution u=x to transform the integral into 2∫sinudu which integrates to −2cosu+C. Finally, revert back to x.