Question
Question: $\int \frac{sin^6x + cos^6x}{sin^2x.cos^2x}dx$...
∫sin2x.cos2xsin6x+cos6xdx

Answer
-2cot(2x) - 3x + C
Explanation
Solution
Solution:
-
Rewrite the Numerator:
sin6x+cos6x=(sin2x+cos2x)3−3sin2xcos2x(sin2x+cos2x)=1−3sin2xcos2x. -
Simplify the Integrand:
sin2xcos2xsin6x+cos6x=sin2xcos2x1−3sin2xcos2x=sin2xcos2x1−3. -
Express in Terms of the Double Angle: Note that:
sin2xcos2x=41sin2(2x)⇒sin2xcos2x1=sin2(2x)4=4csc2(2x). -
Write the Integral Separately:
∫sin2xcos2xsin6x+cos6xdx=4∫csc2(2x)dx−3∫dx. -
Integrate Each Part:
- For ∫csc2(2x)dx: Use substitution u=2x so that du=2dx; hence, ∫csc2(2x)dx=21∫csc2udu=−21cotu+C=−21cot(2x)+C.
- For ∫dx: This is x.
-
Combine the Results:
4(−21cot(2x))−3x+C=−2cot(2x)−3x+C.
Explanation:
Use the sum-of-cubes identity to simplify the numerator, express in terms of double-angle, and integrate using the standard integral ∫csc2udu=−cotu.