Solveeit Logo

Question

Question: $\int \frac{sin^6x + cos^6x}{sin^2x.cos^2x}dx$...

sin6x+cos6xsin2x.cos2xdx\int \frac{sin^6x + cos^6x}{sin^2x.cos^2x}dx

Answer

-2cot(2x) - 3x + C

Explanation

Solution

Solution:

  1. Rewrite the Numerator:

    sin6x+cos6x=(sin2x+cos2x)33sin2xcos2x(sin2x+cos2x)=13sin2xcos2x.\sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)^3 - 3\sin^2 x \cos^2 x (\sin^2 x + \cos^2 x) = 1 - 3\sin^2 x\cos^2 x.
  2. Simplify the Integrand:

    sin6x+cos6xsin2xcos2x=13sin2xcos2xsin2xcos2x=1sin2xcos2x3.\frac{\sin^6 x + \cos^6 x}{\sin^2 x\cos^2 x} = \frac{1 - 3\sin^2 x \cos^2 x}{\sin^2 x\cos^2 x} = \frac{1}{\sin^2 x\cos^2 x} - 3.
  3. Express in Terms of the Double Angle: Note that:

    sin2xcos2x=14sin2(2x)1sin2xcos2x=4sin2(2x)=4csc2(2x).\sin^2 x\cos^2 x = \frac{1}{4}\sin^2 (2x) \quad \Rightarrow \quad \frac{1}{\sin^2 x\cos^2 x} = \frac{4}{\sin^2 (2x)} = 4\,\csc^2 (2x).
  4. Write the Integral Separately:

    sin6x+cos6xsin2xcos2xdx=4csc2(2x)dx3dx.\int \frac{\sin^6 x + \cos^6 x}{\sin^2 x\cos^2 x}\,dx = 4\int \csc^2(2x)\,dx - 3\int dx.
  5. Integrate Each Part:

    • For csc2(2x)dx\int \csc^2(2x)\,dx: Use substitution u=2xu = 2x so that du=2dxdu = 2dx; hence, csc2(2x)dx=12csc2udu=12cotu+C=12cot(2x)+C.\int \csc^2(2x)\,dx = \frac{1}{2}\int \csc^2 u\,du = -\frac{1}{2}\cot u + C = -\frac{1}{2}\cot(2x) + C.
    • For dx\int dx: This is xx.
  6. Combine the Results:

    4(12cot(2x))3x+C=2cot(2x)3x+C.4\left(-\frac{1}{2}\cot(2x)\right) - 3x + C = -2\cot(2x) - 3x + C.

Explanation:

Use the sum-of-cubes identity to simplify the numerator, express in terms of double-angle, and integrate using the standard integral csc2udu=cotu\int \csc^2u\,du = -\cot u.