Question
Question: $\int \frac{sin^3x+cos^3x}{sin^2xcos^2x}dx$...
∫sin2xcos2xsin3x+cos3xdx

Answer
secx−cscx+C
Explanation
Solution
We start with
I=∫sin2xcos2xsin3x+cos3xdx.Step 1: Rewrite the integrand by splitting the fraction:
sin2xcos2xsin3x+sin2xcos2xcos3x=cos2xsinx+sin2xcosx.Thus,
I=∫cos2xsinxdx+∫sin2xcosxdx.Step 2: Evaluate the first integral. Let u=cosx so that du=−sinxdx. Then:
∫cos2xsinxdx=−∫u2du=u1+C1=secx+C1.Step 3: Evaluate the second integral. Let v=sinx so that dv=cosxdx. Then:
∫sin2xcosxdx=∫v2dv=−v1+C2=−cscx+C2.Step 4: Combine the results.
I=secx−cscx+Cwhere C=C1+C2.