Solveeit Logo

Question

Question: $\int \frac{sin^3x+cos^3x}{sin^2xcos^2x}dx$...

sin3x+cos3xsin2xcos2xdx\int \frac{sin^3x+cos^3x}{sin^2xcos^2x}dx

Answer

secxcscx+C\sec x - \csc x + C

Explanation

Solution

We start with

I=sin3x+cos3xsin2xcos2xdx.I = \int \frac{\sin^3 x + \cos^3 x}{\sin^2 x \cos^2 x}\,dx.

Step 1: Rewrite the integrand by splitting the fraction:

sin3xsin2xcos2x+cos3xsin2xcos2x=sinxcos2x+cosxsin2x.\frac{\sin^3 x}{\sin^2 x\cos^2 x} + \frac{\cos^3 x}{\sin^2 x\cos^2 x} = \frac{\sin x}{\cos^2 x} + \frac{\cos x}{\sin^2 x}.

Thus,

I=sinxcos2xdx+cosxsin2xdx.I = \int \frac{\sin x}{\cos^2 x}\,dx + \int \frac{\cos x}{\sin^2 x}\,dx.

Step 2: Evaluate the first integral. Let u=cosxu = \cos x so that du=sinxdxdu = -\sin x\,dx. Then:

sinxcos2xdx=duu2=1u+C1=secx+C1.\int \frac{\sin x}{\cos^2 x}\,dx = -\int \frac{du}{u^2} = \frac{1}{u} + C_1 = \sec x + C_1.

Step 3: Evaluate the second integral. Let v=sinxv = \sin x so that dv=cosxdxdv = \cos x\,dx. Then:

cosxsin2xdx=dvv2=1v+C2=cscx+C2.\int \frac{\cos x}{\sin^2 x}\,dx = \int \frac{dv}{v^2} = -\frac{1}{v} + C_2 = -\csc x + C_2.

Step 4: Combine the results.

I=secxcscx+Cwhere C=C1+C2.I = \sec x - \csc x + C \quad \text{where } C = C_1 + C_2.