Question
Question: $\int \frac{sin^3x + cos^3x}{sin^2x \cdot cos^2x} dx$...
∫sin2x⋅cos2xsin3x+cos3xdx

secx−cscx+C
Solution
The problem asks us to evaluate the integral ∫sin2x⋅cos2xsin3x+cos3xdx.
We can split the integrand into two separate fractions: ∫(sin2x⋅cos2xsin3x+sin2x⋅cos2xcos3x)dx
Now, simplify each term: For the first term: sin2x⋅cos2xsin3x=cos2xsinx We can rewrite this as: cosxsinx⋅cosx1=tanx⋅secx
For the second term: sin2x⋅cos2xcos3x=sin2xcosx We can rewrite this as: sinxcosx⋅sinx1=cotx⋅cscx
Substitute these simplified terms back into the integral: ∫(tanx⋅secx+cotx⋅cscx)dx
Now, integrate each term separately using standard integral formulas: We know that: ∫secxtanx dx=secx+C1 And: ∫cscxcotx dx=−cscx+C2
Combining these results, the integral becomes: ∫(tanx⋅secx+cotx⋅cscx)dx=secx−cscx+C where C is the constant of integration.
Explanation of the solution:
- Decomposition: The given fraction is split into two simpler fractions by distributing the denominator. sin2x⋅cos2xsin3x+cos3x=sin2x⋅cos2xsin3x+sin2x⋅cos2xcos3x
- Simplification: Each fraction is simplified using trigonometric identities:
- The first term simplifies to cos2xsinx=cosxsinx⋅cosx1=tanxsecx.
- The second term simplifies to sin2xcosx=sinxcosx⋅sinx1=cotxcscx.
- Integration: The integral is then evaluated term by term using standard integration formulas:
- ∫secxtanxdx=secx
- ∫cscxcotxdx=−cscx
- Final Result: Combining the results gives the final answer secx−cscx+C.