Solveeit Logo

Question

Question: \int \frac{sin(2-ex)}{cos^2(2-3x)}dx...

\int \frac{sin(2-ex)}{cos^2(2-3x)}dx

Answer

Assuming the question intended to be sin(23x)cos2(23x)dx\int \frac{\sin(2-3x)}{\cos^2(2-3x)}dx, the answer is 13sec(23x)+C-\frac{1}{3} \sec(2-3x) + C.

Explanation

Solution

Let u=cos(23x)u = \cos(2-3x). Then du=sin(23x)(3)dx=3sin(23x)dxdu = - \sin(2-3x) \cdot (-3) dx = 3 \sin(2-3x) dx. So, sin(23x)dx=13du\sin(2-3x) dx = \frac{1}{3} du. The integral becomes 1u213du=13u2du=13u11+C=13u+C\int \frac{1}{u^2} \cdot \frac{1}{3} du = \frac{1}{3} \int u^{-2} du = \frac{1}{3} \frac{u^{-1}}{-1} + C = -\frac{1}{3u} + C. Substituting back u=cos(23x)u = \cos(2-3x), we get 13cos(23x)+C=13sec(23x)+C-\frac{1}{3\cos(2-3x)} + C = -\frac{1}{3} \sec(2-3x) + C.