Question
Question: \int \frac{sin(2-ex)}{cos^2(2-3x)}dx...
\int \frac{sin(2-ex)}{cos^2(2-3x)}dx

Answer
Assuming the question intended to be ∫cos2(2−3x)sin(2−3x)dx, the answer is −31sec(2−3x)+C.
Explanation
Solution
Let u=cos(2−3x). Then du=−sin(2−3x)⋅(−3)dx=3sin(2−3x)dx. So, sin(2−3x)dx=31du. The integral becomes ∫u21⋅31du=31∫u−2du=31−1u−1+C=−3u1+C. Substituting back u=cos(2−3x), we get −3cos(2−3x)1+C=−31sec(2−3x)+C.