Question
Question: $\int \frac{Sin \ x \cdot Cos \frac{5x}{2}}{Cos \frac{x}{2}} dx =$...
∫Cos2xSin x⋅Cos25xdx=

Answer
21cos2x−31cos3x+C.
Explanation
Solution
Solution:
Given the integral
I=∫cos2xsinxcos25xdx,Step 1: Use the identity sinx=2sin2xcos2x to rewrite:
I=∫cos2x2sin2xcos2x⋅cos25xdx=∫2sin2xcos25xdx.Step 2: Apply the product-to-sum formula:
2sinAcosB=sin(A+B)+sin(A−B)with A=2x and B=25x. Then,
2sin2xcos25x=sin(2x+25x)+sin(2x−25x)=sin3x+sin(−2x)=sin3x−sin2x.Step 3: Now the integral becomes:
I=∫(sin3x−sin2x)dx.Integrate term-by-term:
∫sin3xdx=−31cos3x,∫sin2xdx=−21cos2x.Thus,
I=−31cos3x+21cos2x+C.Minimal Explanation:
-
Replace sinx by 2sin2xcos2x to cancel the denominator.
-
Use the product-to-sum formula to convert the product into sums of sines.
-
Integrate each sine term.
Mermaid Diagram: