Solveeit Logo

Question

Question: $\int \frac{Sin \ x \cdot Cos \frac{5x}{2}}{Cos \frac{x}{2}} dx =$...

Sin xCos5x2Cosx2dx=\int \frac{Sin \ x \cdot Cos \frac{5x}{2}}{Cos \frac{x}{2}} dx =

Answer

12cos2x13cos3x+C.\frac{1}{2}\cos 2x-\frac{1}{3}\cos3x+C.

Explanation

Solution

Solution:

Given the integral

I=sinxcos5x2cosx2dx,I=\int \frac{\sin x\, \cos\frac{5x}{2}}{\cos\frac{x}{2}}\,dx,

Step 1: Use the identity sinx=2sinx2cosx2\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2} to rewrite:

I=2sinx2cosx2cos5x2cosx2dx=2sinx2cos5x2dx.I=\int \frac{2\sin\frac{x}{2}\cos\frac{x}{2}\cdot\cos\frac{5x}{2}}{\cos\frac{x}{2}}\,dx =\int 2\sin\frac{x}{2}\cos\frac{5x}{2}\,dx.

Step 2: Apply the product-to-sum formula:

2sinAcosB=sin(A+B)+sin(AB)2\sin A\cos B = \sin(A+B)+\sin(A-B)

with A=x2A=\frac{x}{2} and B=5x2B=\frac{5x}{2}. Then,

2sinx2cos5x2=sin(x2+5x2)+sin(x25x2)=sin3x+sin(2x)=sin3xsin2x.2\sin\frac{x}{2}\cos\frac{5x}{2} = \sin\left(\frac{x}{2}+\frac{5x}{2}\right)+\sin\left(\frac{x}{2}-\frac{5x}{2}\right) =\sin3x+\sin(-2x)=\sin3x-\sin2x.

Step 3: Now the integral becomes:

I=(sin3xsin2x)dx.I=\int \left(\sin3x-\sin2x\right)\,dx.

Integrate term-by-term:

sin3xdx=13cos3x,sin2xdx=12cos2x.\int \sin 3x\,dx = -\frac{1}{3}\cos3x,\quad \int \sin2x\,dx = -\frac{1}{2}\cos2x.

Thus,

I=13cos3x+12cos2x+C.I=-\frac{1}{3}\cos3x + \frac{1}{2}\cos2x + C.

Minimal Explanation:

  1. Replace sinx\sin x by 2sinx2cosx22\sin\frac{x}{2}\cos\frac{x}{2} to cancel the denominator.

  2. Use the product-to-sum formula to convert the product into sums of sines.

  3. Integrate each sine term.


Mermaid Diagram: