Solveeit Logo

Question

Question: $\int \frac{\sec x}{\sqrt{\log(\sec x + \tan x)}} dx =$...

secxlog(secx+tanx)dx=\int \frac{\sec x}{\sqrt{\log(\sec x + \tan x)}} dx =

Answer

2log(secx+tanx)+C2\sqrt{\log(\sec x + \tan x)} + C

Explanation

Solution

  1. Substitute u=log(secx+tanx)u = \log(\sec x + \tan x).

  2. Calculate the differential du=ddx(log(secx+tanx))dx=secxdxdu = \frac{d}{dx}(\log(\sec x + \tan x)) dx = \sec x dx.

  3. Rewrite the integral in terms of uu: 1udu\int \frac{1}{\sqrt{u}} du.

  4. Evaluate the integral: u1/2du=2u1/2+C\int u^{-1/2} du = 2u^{1/2} + C.

  5. Substitute back u=log(secx+tanx)u = \log(\sec x + \tan x) to obtain the final result 2log(secx+tanx)+C2\sqrt{\log(\sec x + \tan x)} + C.