Question
Question: $\int \frac{\sec x}{\sqrt{\log(\sec x + \tan x)}} dx =$...
∫log(secx+tanx)secxdx=

Answer
2log(secx+tanx)+C
Explanation
Solution
-
Substitute u=log(secx+tanx).
-
Calculate the differential du=dxd(log(secx+tanx))dx=secxdx.
-
Rewrite the integral in terms of u: ∫u1du.
-
Evaluate the integral: ∫u−1/2du=2u1/2+C.
-
Substitute back u=log(secx+tanx) to obtain the final result 2log(secx+tanx)+C.