Solveeit Logo

Question

Question: $\int \frac{\sec x}{3(\sec x + \tan x)+2}dx =$...

secx3(secx+tanx)+2dx=\int \frac{\sec x}{3(\sec x + \tan x)+2}dx =

Answer

12lntan(x/2)+1tan(x/2)+5+C\frac{1}{2} \ln\left|\frac{\tan(x/2)+1}{\tan(x/2)+5}\right| + C

Explanation

Solution

The given integral is I=secx3(secx+tanx)+2dxI = \int \frac{\sec x}{3(\sec x + \tan x)+2}dx.

First, rewrite the integrand in terms of sinx\sin x and cosx\cos x: secx=1cosx\sec x = \frac{1}{\cos x} and tanx=sinxcosx\tan x = \frac{\sin x}{\cos x}. The integrand becomes: 1cosx3(1cosx+sinxcosx)+2=1cosx3(1+sinxcosx)+2=1cosx3(1+sinx)+2cosxcosx\frac{\frac{1}{\cos x}}{3(\frac{1}{\cos x} + \frac{\sin x}{\cos x})+2} = \frac{\frac{1}{\cos x}}{3(\frac{1+\sin x}{\cos x})+2} = \frac{\frac{1}{\cos x}}{\frac{3(1+\sin x) + 2\cos x}{\cos x}} =1cosx×cosx3(1+sinx)+2cosx=13+3sinx+2cosx= \frac{1}{\cos x} \times \frac{\cos x}{3(1+\sin x) + 2\cos x} = \frac{1}{3+3\sin x + 2\cos x}. So the integral is I=13+3sinx+2cosxdxI = \int \frac{1}{3+3\sin x + 2\cos x}dx.

This is an integral of the form 1a+bsinx+ccosxdx\int \frac{1}{a+b\sin x + c\cos x}dx. We use the substitution t=tan(x/2)t = \tan(x/2). We have dx=2dt1+t2dx = \frac{2dt}{1+t^2}, sinx=2t1+t2\sin x = \frac{2t}{1+t^2}, and cosx=1t21+t2\cos x = \frac{1-t^2}{1+t^2}. Substitute these into the integral: I=13+3(2t1+t2)+2(1t21+t2)2dt1+t2I = \int \frac{1}{3+3\left(\frac{2t}{1+t^2}\right) + 2\left(\frac{1-t^2}{1+t^2}\right)} \frac{2dt}{1+t^2} Simplify the denominator: 3+3(2t1+t2)+2(1t21+t2)=3(1+t2)+3(2t)+2(1t2)1+t2=3+3t2+6t+22t21+t2=t2+6t+51+t23+3\left(\frac{2t}{1+t^2}\right) + 2\left(\frac{1-t^2}{1+t^2}\right) = \frac{3(1+t^2) + 3(2t) + 2(1-t^2)}{1+t^2} = \frac{3+3t^2+6t+2-2t^2}{1+t^2} = \frac{t^2+6t+5}{1+t^2}. Substitute this back into the integral: I=1t2+6t+51+t22dt1+t2=1+t2t2+6t+52dt1+t2I = \int \frac{1}{\frac{t^2+6t+5}{1+t^2}} \frac{2dt}{1+t^2} = \int \frac{1+t^2}{t^2+6t+5} \frac{2dt}{1+t^2} I=2t2+6t+5dtI = \int \frac{2}{t^2+6t+5} dt.

Factor the quadratic in the denominator: t2+6t+5=(t+1)(t+5)t^2+6t+5 = (t+1)(t+5). I=2(t+1)(t+5)dtI = \int \frac{2}{(t+1)(t+5)} dt.

Use partial fraction decomposition: 2(t+1)(t+5)=At+1+Bt+5\frac{2}{(t+1)(t+5)} = \frac{A}{t+1} + \frac{B}{t+5} 2=A(t+5)+B(t+1)2 = A(t+5) + B(t+1). Set t=1t=-1: 2=A(1+5)+B(1+1)=4A    A=122 = A(-1+5) + B(-1+1) = 4A \implies A = \frac{1}{2}. Set t=5t=-5: 2=A(5+5)+B(5+1)=4B    B=122 = A(-5+5) + B(-5+1) = -4B \implies B = -\frac{1}{2}. So, 2(t+1)(t+5)=1/2t+11/2t+5\frac{2}{(t+1)(t+5)} = \frac{1/2}{t+1} - \frac{1/2}{t+5}.

Now integrate with respect to tt: I=(1/2t+11/2t+5)dt=121t+1dt121t+5dtI = \int \left(\frac{1/2}{t+1} - \frac{1/2}{t+5}\right) dt = \frac{1}{2}\int \frac{1}{t+1} dt - \frac{1}{2}\int \frac{1}{t+5} dt I=12lnt+112lnt+5+CI = \frac{1}{2} \ln|t+1| - \frac{1}{2} \ln|t+5| + C I=12(lnt+1lnt+5)+CI = \frac{1}{2} (\ln|t+1| - \ln|t+5|) + C I=12lnt+1t+5+CI = \frac{1}{2} \ln\left|\frac{t+1}{t+5}\right| + C.

Substitute back t=tan(x/2)t = \tan(x/2): I=12lntan(x/2)+1tan(x/2)+5+CI = \frac{1}{2} \ln\left|\frac{\tan(x/2)+1}{\tan(x/2)+5}\right| + C.