Solveeit Logo

Question

Question: $\int \frac{\log x - \log^2 x + x^2}{x^3} dx$ is:...

logxlog2x+x2x3dx\int \frac{\log x - \log^2 x + x^2}{x^3} dx is:

A

logx+2xlogx+C2x2\frac{\log x + 2x \log x + C}{2x^2}

B

log2x+2xlogx+C\log^2 x + 2x \log x + C

C

log2x+2x2logx+C2x2\frac{\log^2 x + 2x^2 \log x + C}{2x^2}

D

logx+2x2logx+C2x2\frac{\log x + 2x^2 \log x + C}{2x^2}

Answer

log2x+2x2logx+C2x2\frac{\log^2 x + 2x^2 \log x + C}{2x^2}

Explanation

Solution

The integral to be evaluated is I=logxlog2x+x2x3dxI = \int \frac{\log x - \log^2 x + x^2}{x^3} dx.

We can split the integrand into two parts: I=(logxlog2xx3+x2x3)dxI = \int \left( \frac{\log x - \log^2 x}{x^3} + \frac{x^2}{x^3} \right) dx I=logxlog2xx3dx+1xdxI = \int \frac{\log x - \log^2 x}{x^3} dx + \int \frac{1}{x} dx

Let's evaluate the second integral first: 1xdx=logx+C1\int \frac{1}{x} dx = \log |x| + C_1.

Now, let's consider the first integral: logxlog2xx3dx\int \frac{\log x - \log^2 x}{x^3} dx. Consider the function f(x)=log2xx2f(x) = \frac{\log^2 x}{x^2}. Using the quotient rule for differentiation, ddx(uv)=uvuvv2\frac{d}{dx} \left( \frac{u}{v} \right) = \frac{u'v - uv'}{v^2}: Here, u=log2xu = \log^2 x and v=x2v = x^2. u=ddx(log2x)=2logx1xu' = \frac{d}{dx}(\log^2 x) = 2 \log x \cdot \frac{1}{x} (using chain rule). v=ddx(x2)=2xv' = \frac{d}{dx}(x^2) = 2x.

So, ddx(log2xx2)=(2logx1x)x2(log2x)(2x)(x2)2\frac{d}{dx} \left( \frac{\log^2 x}{x^2} \right) = \frac{\left(2 \log x \cdot \frac{1}{x}\right) \cdot x^2 - (\log^2 x) \cdot (2x)}{(x^2)^2} =2xlogx2xlog2xx4= \frac{2x \log x - 2x \log^2 x}{x^4} =2x(logxlog2x)x4= \frac{2x (\log x - \log^2 x)}{x^4} =2(logxlog2x)x3= \frac{2(\log x - \log^2 x)}{x^3}.

Therefore, we have found that ddx(log2xx2)=2(logxlog2x)x3\frac{d}{dx} \left( \frac{\log^2 x}{x^2} \right) = \frac{2(\log x - \log^2 x)}{x^3}. This implies that ddx(12log2xx2)=logxlog2xx3\frac{d}{dx} \left( \frac{1}{2} \frac{\log^2 x}{x^2} \right) = \frac{\log x - \log^2 x}{x^3}.

So, the first integral is: logxlog2xx3dx=12log2xx2+C2\int \frac{\log x - \log^2 x}{x^3} dx = \frac{1}{2} \frac{\log^2 x}{x^2} + C_2.

Now, combine the results of both integrals: I=(12log2xx2)+logx+CI = \left( \frac{1}{2} \frac{\log^2 x}{x^2} \right) + \log x + C, where C=C1+C2C = C_1 + C_2. To match the given options, we can write the expression with a common denominator 2x22x^2: I=log2x2x2+2x2logx2x2+CI = \frac{\log^2 x}{2x^2} + \frac{2x^2 \log x}{2x^2} + C I=log2x+2x2logx2x2+CI = \frac{\log^2 x + 2x^2 \log x}{2x^2} + C.