Question
Question: $\int \frac{\log x - \log^2 x + x^2}{x^3} dx$ is:...
∫x3logx−log2x+x2dx is:

2x2logx+2xlogx+C
log2x+2xlogx+C
2x2log2x+2x2logx+C
2x2logx+2x2logx+C
2x2log2x+2x2logx+C
Solution
The integral to be evaluated is I=∫x3logx−log2x+x2dx.
We can split the integrand into two parts: I=∫(x3logx−log2x+x3x2)dx I=∫x3logx−log2xdx+∫x1dx
Let's evaluate the second integral first: ∫x1dx=log∣x∣+C1.
Now, let's consider the first integral: ∫x3logx−log2xdx. Consider the function f(x)=x2log2x. Using the quotient rule for differentiation, dxd(vu)=v2u′v−uv′: Here, u=log2x and v=x2. u′=dxd(log2x)=2logx⋅x1 (using chain rule). v′=dxd(x2)=2x.
So, dxd(x2log2x)=(x2)2(2logx⋅x1)⋅x2−(log2x)⋅(2x) =x42xlogx−2xlog2x =x42x(logx−log2x) =x32(logx−log2x).
Therefore, we have found that dxd(x2log2x)=x32(logx−log2x). This implies that dxd(21x2log2x)=x3logx−log2x.
So, the first integral is: ∫x3logx−log2xdx=21x2log2x+C2.
Now, combine the results of both integrals: I=(21x2log2x)+logx+C, where C=C1+C2. To match the given options, we can write the expression with a common denominator 2x2: I=2x2log2x+2x22x2logx+C I=2x2log2x+2x2logx+C.