Solveeit Logo

Question

Question: $\int \frac{lnx-1}{(lnx)^2}dx$...

lnx1(lnx)2dx\int \frac{lnx-1}{(lnx)^2}dx

Answer

xlnx+C\frac{x}{\ln x} + C

Explanation

Solution

To evaluate the integral lnx1(lnx)2dx\int \frac{\ln x - 1}{(\ln x)^2} dx, we can use a substitution method.

Let t=lnxt = \ln x.
From this substitution, we can express xx in terms of tt:
x=etx = e^t.

Now, differentiate x=etx = e^t with respect to tt to find dxdx:
dx=etdtdx = e^t dt.

Substitute tt and dxdx into the integral: lnx1(lnx)2dx=t1t2etdt\int \frac{\ln x - 1}{(\ln x)^2} dx = \int \frac{t - 1}{t^2} e^t dt

Rearrange the terms inside the integral: (tt21t2)etdt=(1t1t2)etdt\int \left(\frac{t}{t^2} - \frac{1}{t^2}\right) e^t dt = \int \left(\frac{1}{t} - \frac{1}{t^2}\right) e^t dt

This integral is of the form ex(f(x)+f(x))dx=exf(x)+C\int e^x (f(x) + f'(x)) dx = e^x f(x) + C.
In our case, let f(t)=1tf(t) = \frac{1}{t}.
Then, the derivative of f(t)f(t) with respect to tt is f(t)=1t2f'(t) = -\frac{1}{t^2}.

So, the integral matches the form et(f(t)+f(t))dt\int e^t (f(t) + f'(t)) dt.
Applying the formula, the integral evaluates to: etf(t)+C=et1t+Ce^t f(t) + C = e^t \cdot \frac{1}{t} + C

Finally, substitute back t=lnxt = \ln x into the result: elnx1lnx+Ce^{\ln x} \cdot \frac{1}{\ln x} + C Since elnx=xe^{\ln x} = x, the expression simplifies to: x1lnx+C=xlnx+Cx \cdot \frac{1}{\ln x} + C = \frac{x}{\ln x} + C

To verify the result, differentiate xlnx\frac{x}{\ln x} with respect to xx using the quotient rule:
Let u=xu = x and v=lnxv = \ln x. Then u=1u' = 1 and v=1xv' = \frac{1}{x}. ddx(xlnx)=uvuvv2=1lnxx1x(lnx)2=lnx1(lnx)2\frac{d}{dx}\left(\frac{x}{\ln x}\right) = \frac{u'v - uv'}{v^2} = \frac{1 \cdot \ln x - x \cdot \frac{1}{x}}{(\ln x)^2} = \frac{\ln x - 1}{(\ln x)^2} This matches the original integrand, confirming the correctness of the solution.