Solveeit Logo

Question

Question: \int \frac{e^{4x}}{1+e^{-x}} = ...

\int \frac{e^{4x}}{1+e^{-x}} =

Answer

\frac{e^{4x}}{4} - \frac{e^{3x}}{3} + \frac{e^{2x}}{2} - e^x + \ln(e^x+1) + C

Explanation

Solution

Simplify the integrand to e5xex+1\frac{e^{5x}}{e^x+1}. Substitute u=exu=e^x, transforming the integral to u4u+1du\int \frac{u^4}{u+1} du. Decompose u4u+1\frac{u^4}{u+1} into u3u2+u1+1u+1u^3 - u^2 + u - 1 + \frac{1}{u+1}. Integrate term-by-term and substitute back u=exu=e^x to obtain the final result.