Solveeit Logo

Question

Question: $\int \frac{dx}{x^2+x+1} =$...

dxx2+x+1=\int \frac{dx}{x^2+x+1} =

Answer

23tan1(2x+13)+C\frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2x+1}{\sqrt{3}}\right) + C

Explanation

Solution

To evaluate the integral dxx2+x+1\int \frac{dx}{x^2+x+1}, we need to complete the square in the denominator.

The denominator is x2+x+1x^2+x+1. To complete the square for a quadratic expression of the form ax2+bx+cax^2+bx+c, we can write it as a(x+b2a)2+cb24aa\left(x+\frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}. In this case, a=1a=1, b=1b=1, c=1c=1. So, x2+x+1=(x+12)2+1124(1)x^2+x+1 = \left(x+\frac{1}{2}\right)^2 + 1 - \frac{1^2}{4(1)} =(x+12)2+114= \left(x+\frac{1}{2}\right)^2 + 1 - \frac{1}{4} =(x+12)2+414= \left(x+\frac{1}{2}\right)^2 + \frac{4-1}{4} =(x+12)2+34= \left(x+\frac{1}{2}\right)^2 + \frac{3}{4}

Now, substitute this back into the integral: dxx2+x+1=dx(x+12)2+34\int \frac{dx}{x^2+x+1} = \int \frac{dx}{\left(x+\frac{1}{2}\right)^2 + \frac{3}{4}} This integral is of the form duu2+a2\int \frac{du}{u^2+a^2}, where u=x+12u = x+\frac{1}{2} and a2=34a^2 = \frac{3}{4}. If u=x+12u = x+\frac{1}{2}, then du=dxdu = dx. And a=34=32a = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}.

Using the standard integral formula duu2+a2=1atan1(ua)+C\int \frac{du}{u^2+a^2} = \frac{1}{a} \tan^{-1}\left(\frac{u}{a}\right) + C: dx(x+12)2+(32)2=132tan1(x+1232)+C\int \frac{dx}{\left(x+\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \frac{1}{\frac{\sqrt{3}}{2}} \tan^{-1}\left(\frac{x+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) + C Simplify the expression: =23tan1(2x+1232)+C= \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{\frac{2x+1}{2}}{\frac{\sqrt{3}}{2}}\right) + C =23tan1(2x+13)+C= \frac{2}{\sqrt{3}} \tan^{-1}\left(\frac{2x+1}{\sqrt{3}}\right) + C

Explanation of the solution:

  1. Complete the square: Rewrite the quadratic denominator x2+x+1x^2+x+1 as (x+1/2)2+3/4(x+1/2)^2 + 3/4.
  2. Identify standard form: The integral transforms to dx(x+1/2)2+(3/2)2\int \frac{dx}{(x+1/2)^2 + (\sqrt{3}/2)^2}, which is in the form duu2+a2\int \frac{du}{u^2+a^2}.
  3. Apply formula: Use the standard integral formula duu2+a2=1atan1(ua)+C\int \frac{du}{u^2+a^2} = \frac{1}{a} \tan^{-1}\left(\frac{u}{a}\right) + C with u=x+1/2u = x+1/2 and a=3/2a = \sqrt{3}/2.
  4. Simplify: Substitute and simplify the expression to get the final result.