Question
Question: $\int \frac{dx}{x^2-a^2} dx = \frac{1}{2a} ln \left| \frac{x-a}{x+a} \right| + C$...
∫x2−a2dxdx=2a1lnx+ax−a+C

The given formula is correct.
Solution
To evaluate the integral ∫x2−a2dx, we use the method of partial fraction decomposition.
Step 1: Factor the denominator
The denominator x2−a2 is a difference of squares, which can be factored as (x−a)(x+a).
So the integral becomes:
∫(x−a)(x+a)dx
Step 2: Decompose the integrand into partial fractions
We assume that (x−a)(x+a)1 can be written as the sum of two simpler fractions:
(x−a)(x+a)1=x−aA+x+aB
To find the constants A and B, we multiply both sides by (x−a)(x+a):
1=A(x+a)+B(x−a)
Now, we can find A and B by substituting specific values for x:
-
Set x=a:
1=A(a+a)+B(a−a)
1=A(2a)+B(0)
1=2aA⟹A=2a1
-
Set x=−a:
1=A(−a+a)+B(−a−a)
1=A(0)+B(−2a)
1=−2aB⟹B=−2a1
Step 3: Substitute the partial fractions back into the integral
Now, the integral can be written as:
∫(2a(x−a)1−2a(x+a)1)dx
We can factor out 2a1:
2a1∫(x−a1−x+a1)dx
Step 4: Integrate term by term
We know that ∫u1du=ln∣u∣+C.
2a1(∫x−a1dx−∫x+a1dx)
=2a1(ln∣x−a∣−ln∣x+a∣)+C
Step 5: Apply logarithm properties
Using the logarithm property lnP−lnQ=ln(QP):
=2a1lnx+ax−a+C
This result matches the formula provided in the question.
The given formula is correct.