Solveeit Logo

Question

Question: $\int \frac{dx}{x^2-a^2} dx = \frac{1}{2a} ln \left| \frac{x-a}{x+a} \right| + C$...

dxx2a2dx=12alnxax+a+C\int \frac{dx}{x^2-a^2} dx = \frac{1}{2a} ln \left| \frac{x-a}{x+a} \right| + C

Answer

The given formula is correct.

Explanation

Solution

To evaluate the integral dxx2a2\int \frac{dx}{x^2-a^2}, we use the method of partial fraction decomposition.

Step 1: Factor the denominator

The denominator x2a2x^2-a^2 is a difference of squares, which can be factored as (xa)(x+a)(x-a)(x+a).
So the integral becomes:

dx(xa)(x+a)\int \frac{dx}{(x-a)(x+a)}

Step 2: Decompose the integrand into partial fractions

We assume that 1(xa)(x+a)\frac{1}{(x-a)(x+a)} can be written as the sum of two simpler fractions:

1(xa)(x+a)=Axa+Bx+a\frac{1}{(x-a)(x+a)} = \frac{A}{x-a} + \frac{B}{x+a}

To find the constants AA and BB, we multiply both sides by (xa)(x+a)(x-a)(x+a):

1=A(x+a)+B(xa)1 = A(x+a) + B(x-a)

Now, we can find AA and BB by substituting specific values for xx:

  • Set x=ax=a:

    1=A(a+a)+B(aa)1 = A(a+a) + B(a-a)

    1=A(2a)+B(0)1 = A(2a) + B(0)

    1=2aA    A=12a1 = 2aA \implies A = \frac{1}{2a}

  • Set x=ax=-a:

    1=A(a+a)+B(aa)1 = A(-a+a) + B(-a-a)

    1=A(0)+B(2a)1 = A(0) + B(-2a)

    1=2aB    B=12a1 = -2aB \implies B = -\frac{1}{2a}

Step 3: Substitute the partial fractions back into the integral

Now, the integral can be written as:

(12a(xa)12a(x+a))dx\int \left( \frac{1}{2a(x-a)} - \frac{1}{2a(x+a)} \right) dx

We can factor out 12a\frac{1}{2a}:

12a(1xa1x+a)dx\frac{1}{2a} \int \left( \frac{1}{x-a} - \frac{1}{x+a} \right) dx

Step 4: Integrate term by term

We know that 1udu=lnu+C\int \frac{1}{u} du = \ln|u| + C.

12a(1xadx1x+adx)\frac{1}{2a} \left( \int \frac{1}{x-a} dx - \int \frac{1}{x+a} dx \right)

=12a(lnxalnx+a)+C= \frac{1}{2a} \left( \ln|x-a| - \ln|x+a| \right) + C

Step 5: Apply logarithm properties

Using the logarithm property lnPlnQ=ln(PQ)\ln P - \ln Q = \ln \left(\frac{P}{Q}\right):

=12alnxax+a+C= \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| + C

This result matches the formula provided in the question.

The given formula is correct.