Solveeit Logo

Question

Question: $\int \frac{dx}{(x+1)\sqrt{x^2+4}} =$...

dx(x+1)x2+4=\int \frac{dx}{(x+1)\sqrt{x^2+4}} =

A

15lnx2+4x+2x+1+C\frac{1}{\sqrt{5}} \ln\left|\frac{\sqrt{x^2+4}-x+2}{x+1}\right|+C

B

15lnx2+4x2x+1+C\frac{1}{\sqrt{5}} \ln\left|\frac{\sqrt{x^2+4}-x-2}{x+1}\right|+C

C

15lnx2+4+x2x+1+C\frac{1}{\sqrt{5}} \ln\left|\frac{\sqrt{x^2+4}+x-2}{x+1}\right|+C

D

15lnx2+4x+4x+1+C\frac{1}{\sqrt{5}} \ln\left|\frac{\sqrt{x^2+4}-x+4}{x+1}\right|+C

Answer

15lnx2+4+x2x+1+C\frac{1}{\sqrt{5}} \ln\left|\frac{\sqrt{x^2+4}+x-2}{x+1}\right|+C

Explanation

Solution

Let the given integral be I=dx(x+1)x2+4I = \int \frac{dx}{(x+1)\sqrt{x^2+4}}. We use the substitution x+1=1tx+1 = \frac{1}{t}. Then x=1t1x = \frac{1}{t} - 1, and dx=1t2dtdx = -\frac{1}{t^2} dt. Also, x2+4=(1t1)2+4=(1t)2t2+4=12t+t2+4t2t2=5t22t+1t2x^2+4 = \left(\frac{1}{t} - 1\right)^2 + 4 = \frac{(1-t)^2}{t^2} + 4 = \frac{1 - 2t + t^2 + 4t^2}{t^2} = \frac{5t^2 - 2t + 1}{t^2}. So, x2+4=5t22t+1t2=5t22t+1t\sqrt{x^2+4} = \sqrt{\frac{5t^2 - 2t + 1}{t^2}} = \frac{\sqrt{5t^2 - 2t + 1}}{|t|}.

The integral becomes I=1t2dt1t5t22t+1tI = \int \frac{-\frac{1}{t^2} dt}{\frac{1}{t} \cdot \frac{\sqrt{5t^2 - 2t + 1}}{|t|}}.