Solveeit Logo

Question

Question: $\int \frac{dx}{\sqrt{x^2+1}+\sqrt{x^2-1}}$...

dxx2+1+x21\int \frac{dx}{\sqrt{x^2+1}+\sqrt{x^2-1}}

Answer

x4(x2+1x21)+14(lnx+x2+1+lnx+x21)+C\frac{x}{4}(\sqrt{x^2+1} - \sqrt{x^2-1}) + \frac{1}{4}(\ln|x+\sqrt{x^2+1}| + \ln|x+\sqrt{x^2-1}|) + C

Explanation

Solution

To evaluate the integral dxx2+1+x21\int \frac{dx}{\sqrt{x^2+1}+\sqrt{x^2-1}}, we first rationalize the denominator.

Step 1: Rationalize the Denominator

Multiply the numerator and the denominator by the conjugate of the denominator, which is x2+1x21\sqrt{x^2+1}-\sqrt{x^2-1}.

1x2+1+x21=1x2+1+x21×x2+1x21x2+1x21\frac{1}{\sqrt{x^2+1}+\sqrt{x^2-1}} = \frac{1}{\sqrt{x^2+1}+\sqrt{x^2-1}} \times \frac{\sqrt{x^2+1}-\sqrt{x^2-1}}{\sqrt{x^2+1}-\sqrt{x^2-1}}

Using the identity (a+b)(ab)=a2b2(a+b)(a-b) = a^2-b^2 in the denominator:

=x2+1x21(x2+1)2(x21)2= \frac{\sqrt{x^2+1}-\sqrt{x^2-1}}{(\sqrt{x^2+1})^2 - (\sqrt{x^2-1})^2} =x2+1x21(x2+1)(x21)= \frac{\sqrt{x^2+1}-\sqrt{x^2-1}}{(x^2+1) - (x^2-1)} =x2+1x21x2+1x2+1= \frac{\sqrt{x^2+1}-\sqrt{x^2-1}}{x^2+1-x^2+1} =x2+1x212= \frac{\sqrt{x^2+1}-\sqrt{x^2-1}}{2}

Step 2: Integrate the Simplified Expression

Now, substitute this simplified expression back into the integral:

dxx2+1+x21=x2+1x212dx\int \frac{dx}{\sqrt{x^2+1}+\sqrt{x^2-1}} = \int \frac{\sqrt{x^2+1}-\sqrt{x^2-1}}{2} dx =12[x2+1dxx21dx]= \frac{1}{2} \left[ \int \sqrt{x^2+1} dx - \int \sqrt{x^2-1} dx \right]

Step 3: Apply Standard Integration Formulas

We use the standard integration formulas:

  1. x2+a2dx=x2x2+a2+a22lnx+x2+a2+C\int \sqrt{x^2+a^2} dx = \frac{x}{2}\sqrt{x^2+a^2} + \frac{a^2}{2}\ln|x+\sqrt{x^2+a^2}| + C
  2. x2a2dx=x2x2a2a22lnx+x2a2+C\int \sqrt{x^2-a^2} dx = \frac{x}{2}\sqrt{x^2-a^2} - \frac{a^2}{2}\ln|x+\sqrt{x^2-a^2}| + C

For the first integral, x2+1dx\int \sqrt{x^2+1} dx, we have a=1a=1:

x2+1dx=x2x2+1+122lnx+x2+1=x2x2+1+12lnx+x2+1\int \sqrt{x^2+1} dx = \frac{x}{2}\sqrt{x^2+1} + \frac{1^2}{2}\ln|x+\sqrt{x^2+1}| = \frac{x}{2}\sqrt{x^2+1} + \frac{1}{2}\ln|x+\sqrt{x^2+1}|

For the second integral, x21dx\int \sqrt{x^2-1} dx, we have a=1a=1:

x21dx=x2x21122lnx+x21=x2x2112lnx+x21\int \sqrt{x^2-1} dx = \frac{x}{2}\sqrt{x^2-1} - \frac{1^2}{2}\ln|x+\sqrt{x^2-1}| = \frac{x}{2}\sqrt{x^2-1} - \frac{1}{2}\ln|x+\sqrt{x^2-1}|

Step 4: Combine the Results

Substitute these back into the expression from Step 2:

12[(x2x2+1+12lnx+x2+1)(x2x2112lnx+x21)]+C\frac{1}{2} \left[ \left( \frac{x}{2}\sqrt{x^2+1} + \frac{1}{2}\ln|x+\sqrt{x^2+1}| \right) - \left( \frac{x}{2}\sqrt{x^2-1} - \frac{1}{2}\ln|x+\sqrt{x^2-1}| \right) \right] + C =12[x2x2+1+12lnx+x2+1x2x21+12lnx+x21]+C= \frac{1}{2} \left[ \frac{x}{2}\sqrt{x^2+1} + \frac{1}{2}\ln|x+\sqrt{x^2+1}| - \frac{x}{2}\sqrt{x^2-1} + \frac{1}{2}\ln|x+\sqrt{x^2-1}| \right] + C

Distribute the 12\frac{1}{2}:

=x4x2+1x4x21+14lnx+x2+1+14lnx+x21+C= \frac{x}{4}\sqrt{x^2+1} - \frac{x}{4}\sqrt{x^2-1} + \frac{1}{4}\ln|x+\sqrt{x^2+1}| + \frac{1}{4}\ln|x+\sqrt{x^2-1}| + C

This can also be written by factoring out common terms:

=x4(x2+1x21)+14(lnx+x2+1+lnx+x21)+C= \frac{x}{4}(\sqrt{x^2+1} - \sqrt{x^2-1}) + \frac{1}{4}(\ln|x+\sqrt{x^2+1}| + \ln|x+\sqrt{x^2-1}|) + C

The final answer is x4(x2+1x21)+14(lnx+x2+1+lnx+x21)+C\frac{x}{4}(\sqrt{x^2+1} - \sqrt{x^2-1}) + \frac{1}{4}(\ln|x+\sqrt{x^2+1}| + \ln|x+\sqrt{x^2-1}|) + C.

Explanation of the solution: The integral is simplified by rationalizing the denominator, which transforms the integrand into a difference of two standard forms (x2+a2\sqrt{x^2+a^2} and x2a2\sqrt{x^2-a^2}). Each part is then integrated using their respective standard formulas, and the results are combined.