Solveeit Logo

Question

Question: $\int \frac{dx}{\sqrt[3]{x+1}+1}$...

dxx+13+1\int \frac{dx}{\sqrt[3]{x+1}+1}

Answer

The given integral diverges.

Explanation

Solution

Solution Explanation

  1. Substitution: Let
      u=x+13u = \sqrt[3]{x+1} so that x=u31x = u^3 - 1 and dx=3u2dudx = 3u^2\,du.
      When x=1x = 1, u=23u = \sqrt[3]{2}; when xx \to \infty, uu \to \infty.

  2. Change of Variable: The integral becomes
        1dxx+13+1=323u2u+1du.     \int_{1}^{\infty} \frac{dx}{\sqrt[3]{x+1}+1} = 3\int_{\sqrt[3]{2}}^{\infty}\frac{u^2}{u+1}\,du.   

  3. Long Division: Divide u2u^2 by u+1u+1
        u2u+1=u1+1u+1.     \frac{u^2}{u+1} = u - 1 + \frac{1}{u+1}.   

  4. Separate and Integrate:
        323(u1+1u+1)du.     3\int_{\sqrt[3]{2}}^\infty \left(u - 1 + \frac{1}{u+1}\right)du.   
      Integrate term-by-term:
        (u1)du=u22u,duu+1=lnu+1.     \int \left(u-1\right)du = \frac{u^2}{2} - u,\quad \int \frac{du}{u+1} = \ln|u+1|.   

  5. Check for Convergence:
      Evaluate the antiderivative as uu\to\infty:
        u22u+lnu+1.     \frac{u^2}{2} - u + \ln|u+1| \to \infty.   
      Since the dominating term u22\frac{u^2}{2} tends to infinity, the integral diverges.

Answer
The given integral diverges.