Solveeit Logo

Question

Question: $\int \frac{dx}{\sin^2x \cos^2x}$ is equal to...

dxsin2xcos2x\int \frac{dx}{\sin^2x \cos^2x} is equal to

A

tan x + cot x + C

B

(tan x + co

C

tan x - cotx + C

D

(tan x - c

Answer

tan x - cot x + C

Explanation

Solution

To evaluate the integral dxsin2xcos2x\int \frac{dx}{\sin^2x \cos^2x}, we can use trigonometric identities.

We know that sin2x+cos2x=1\sin^2x + \cos^2x = 1. We can substitute this into the numerator of the integrand: 1sin2xcos2xdx=sin2x+cos2xsin2xcos2xdx\int \frac{1}{\sin^2x \cos^2x} dx = \int \frac{\sin^2x + \cos^2x}{\sin^2x \cos^2x} dx

Now, we can split the fraction into two terms: (sin2xsin2xcos2x+cos2xsin2xcos2x)dx\int \left( \frac{\sin^2x}{\sin^2x \cos^2x} + \frac{\cos^2x}{\sin^2x \cos^2x} \right) dx

Simplify each term: (1cos2x+1sin2x)dx\int \left( \frac{1}{\cos^2x} + \frac{1}{\sin^2x} \right) dx

Recall the reciprocal trigonometric identities: 1cosx=secx\frac{1}{\cos x} = \sec x and 1sinx=cscx\frac{1}{\sin x} = \csc x. So, 1cos2x=sec2x\frac{1}{\cos^2x} = \sec^2x and 1sin2x=csc2x\frac{1}{\sin^2x} = \csc^2x. (sec2x+csc2x)dx\int (\sec^2x + \csc^2x) dx

Now, integrate each term separately using the standard integration formulas: sec2xdx=tanx+C1\int \sec^2x dx = \tan x + C_1 csc2xdx=cotx+C2\int \csc^2x dx = -\cot x + C_2

Combining these results, the integral is: tanxcotx+C\tan x - \cot x + C where C=C1+C2C = C_1 + C_2 is the constant of integration.