Solveeit Logo

Question

Question: $\int \frac{dx}{(\frac{1}{a})^2+x^2}= a^n + tan^{-1}(ax)$. Find the value of n....

dx(1a)2+x2=an+tan1(ax)\int \frac{dx}{(\frac{1}{a})^2+x^2}= a^n + tan^{-1}(ax). Find the value of n.

Answer

1

Explanation

Solution

We know the standard formula:

dxx2+α2=1αtan1(xα)+C.\int \frac{dx}{x^2+\alpha^2} = \frac{1}{\alpha}\tan^{-1}\left(\frac{x}{\alpha}\right)+C.

Here, the integral is

dx(1a)2+x2=dx1a2+x2.\int \frac{dx}{\left(\frac{1}{a}\right)^2+x^2} = \int \frac{dx}{\frac{1}{a^2}+x^2}.

Taking α2=1a2\alpha^2 = \frac{1}{a^2} gives α=1a\alpha = \frac{1}{a} (assuming a>0a>0). Then,

1α=a,\frac{1}{\alpha} = a,

and the integral becomes:

dx1a2+x2=atan1(ax)+C.\int \frac{dx}{\frac{1}{a^2}+x^2} = a\,\tan^{-1}(ax) + C.

Comparing with the given form:

an+tan1(ax),a^n + \tan^{-1}(ax),

we see that the multiplicative factor of tan1(ax)\tan^{-1}(ax) must be aa, i.e., an=aa^n = a, which implies:

n=1.n = 1.