Solveeit Logo

Question

Question: $\int \frac{dx}{4x^{2}+4x+2}=$...

dx4x2+4x+2=\int \frac{dx}{4x^{2}+4x+2}=

Answer

12tan1(2x+1)+C\frac{1}{2} \tan^{-1}(2x+1) + C

Explanation

Solution

To evaluate the integral dx4x2+4x+2\int \frac{dx}{4x^{2}+4x+2}, we will use the method of completing the square in the denominator.

Step 1: Complete the square in the denominator. The denominator is 4x2+4x+24x^2+4x+2. We can factor out 4 from the expression: 4x2+4x+2=4(x2+x+12)4x^2+4x+2 = 4(x^2+x+\frac{1}{2})

Now, complete the square for the quadratic term inside the parenthesis, x2+x+12x^2+x+\frac{1}{2}. To complete the square for x2+bxx^2+bx, we add and subtract (b2)2(\frac{b}{2})^2. Here b=1b=1, so we add and subtract (12)2=14(\frac{1}{2})^2 = \frac{1}{4}. x2+x+12=(x2+x+14)14+12x^2+x+\frac{1}{2} = (x^2+x+\frac{1}{4}) - \frac{1}{4} + \frac{1}{2} =(x+12)2+14= (x+\frac{1}{2})^2 + \frac{1}{4}

Substitute this back into the denominator expression: 4(x2+x+12)=4((x+12)2+14)4(x^2+x+\frac{1}{2}) = 4\left((x+\frac{1}{2})^2 + \frac{1}{4}\right) =4(x+12)2+4×14= 4(x+\frac{1}{2})^2 + 4 \times \frac{1}{4} =4(x+12)2+1= 4(x+\frac{1}{2})^2 + 1

Step 2: Rewrite the integral with the completed square form. The integral becomes: dx4(x+12)2+1\int \frac{dx}{4(x+\frac{1}{2})^2 + 1}

Step 3: Use substitution to simplify the integral. Let u=x+12u = x+\frac{1}{2}. Then, differentiating both sides with respect to xx, we get du=dxdu = dx. Substitute uu and dudu into the integral: du4u2+1\int \frac{du}{4u^2+1}

Step 4: Prepare the integral for the standard inverse tangent formula. Factor out the coefficient of u2u^2 from the denominator: du4(u2+14)=14duu2+14\int \frac{du}{4(u^2+\frac{1}{4})} = \frac{1}{4} \int \frac{du}{u^2+\frac{1}{4}} We can write 14\frac{1}{4} as (12)2(\frac{1}{2})^2: 14duu2+(12)2\frac{1}{4} \int \frac{du}{u^2+(\frac{1}{2})^2}

Step 5: Apply the standard integral formula. This integral is in the standard form dxx2+a2=1atan1(xa)+C\int \frac{dx}{x^2+a^2} = \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + C. In our case, xx is uu and aa is 12\frac{1}{2}. Applying the formula: 14[112tan1(u12)]+C\frac{1}{4} \left[ \frac{1}{\frac{1}{2}} \tan^{-1}\left(\frac{u}{\frac{1}{2}}\right) \right] + C =14[2tan1(2u)]+C= \frac{1}{4} \left[ 2 \tan^{-1}(2u) \right] + C =12tan1(2u)+C= \frac{1}{2} \tan^{-1}(2u) + C

Step 6: Substitute back to express the result in terms of xx. Recall that u=x+12u = x+\frac{1}{2}. Substitute this back into the result: 12tan1(2(x+12))+C\frac{1}{2} \tan^{-1}\left(2\left(x+\frac{1}{2}\right)\right) + C =12tan1(2x+1)+C= \frac{1}{2} \tan^{-1}(2x+1) + C

The final answer is 12tan1(2x+1)+C\boxed{\frac{1}{2} \tan^{-1}(2x+1) + C}.

Explanation of the solution: The integral dx4x2+4x+2\int \frac{dx}{4x^{2}+4x+2} is solved by completing the square in the denominator to transform it into the form a(u2+k2)a(u^2+k^2).

  1. The denominator 4x2+4x+24x^2+4x+2 is rewritten as 4(x+12)2+14(x+\frac{1}{2})^2+1.
  2. A substitution u=x+12u = x+\frac{1}{2} is made, leading to du4u2+1\int \frac{du}{4u^2+1}.
  3. This is simplified to 14duu2+(12)2\frac{1}{4} \int \frac{du}{u^2+(\frac{1}{2})^2}.
  4. The standard integral formula dxx2+a2=1atan1(xa)+C\int \frac{dx}{x^2+a^2} = \frac{1}{a}\tan^{-1}(\frac{x}{a})+C is applied with a=12a=\frac{1}{2}.
  5. The result is 14(11/2tan1(u1/2))+C=12tan1(2u)+C\frac{1}{4} \left( \frac{1}{1/2} \tan^{-1}(\frac{u}{1/2}) \right) + C = \frac{1}{2} \tan^{-1}(2u) + C.
  6. Finally, substituting back u=x+12u = x+\frac{1}{2} yields 12tan1(2x+1)+C\frac{1}{2} \tan^{-1}(2x+1) + C.