Solveeit Logo

Question

Question: \int \frac{d x}{x^{4} \sqrt{x^{2}+4}}...

\int \frac{d x}{x^{4} \sqrt{x^{2}+4}}

A

-\frac{1}{4x\sqrt{x^{2}+4}} + C

B

\frac{1}{2}\arctan(\frac{x}{2}) + C

Answer

-\frac{1}{4x\sqrt{x^{2}+4}} + C

Explanation

Solution

To solve the integral \int \frac{dx}{x^{4}\sqrt{x^{2}+4}}, we can use substitution and integration techniques. The substitution u=x2+4u = x^2 + 4 simplifies the integral, allowing us to integrate more easily. After performing the integration and back-substituting, we arrive at the final answer.