Solveeit Logo

Question

Question: $\int \frac{\cos^4x\,dx}{\sin^3x(\sin^5x + \cos^5x)^{3/5}} = \frac{-1}{2}(1 + (\cot x)^A)^B + C,$ (...

cos4xdxsin3x(sin5x+cos5x)3/5=12(1+(cotx)A)B+C,\int \frac{\cos^4x\,dx}{\sin^3x(\sin^5x + \cos^5x)^{3/5}} = \frac{-1}{2}(1 + (\cot x)^A)^B + C,

(where CC is constant of integration) then A×BA \times B is equal to __________.

Answer

2

Explanation

Solution

  1. Manipulate the integrand by dividing the term (sin5x+cos5x)3/5(\sin^5x + \cos^5x)^{3/5} by sin5x\sin^5x to introduce cot5x\cot^5x.
  2. The integrand simplifies to cot4xcsc2x(1+cot5x)3/5dx\cot^4x \csc^2x (1 + \cot^5x)^{-3/5} dx.
  3. Use the substitution u=1+cot5xu = 1 + \cot^5x, leading to du=5cot4xcsc2xdxdu = -5 \cot^4x \csc^2x dx.
  4. Integrate 15u3/5du-\frac{1}{5} \int u^{-3/5} du to get 12u2/5+C-\frac{1}{2} u^{2/5} + C.
  5. Substitute back uu to obtain 12(1+cot5x)2/5+C-\frac{1}{2} (1 + \cot^5x)^{2/5} + C.
  6. Comparing with the given form, A=5A=5 and B=2/5B=2/5.
  7. Calculate A×B=5×25=2A \times B = 5 \times \frac{2}{5} = 2.