Solveeit Logo

Question

Question: $\int \frac{cos2x}{cos^2x sin^2x}dx$...

cos2xcos2xsin2xdx\int \frac{cos2x}{cos^2x sin^2x}dx

Answer

-\cot x - \tan x + C

Explanation

Solution

Solution:

  1. Write the integrand using an identity:

    cos2x=cos2xsin2x\cos2x = \cos^2x - \sin^2x

    Substitute into the original integrand:

    cos2xcos2xsin2x=cos2xsin2xcos2xsin2x=1sin2x1cos2x=csc2xsec2x.\frac{\cos2x}{\cos^2x\, \sin^2x} = \frac{\cos^2x - \sin^2x}{\cos^2x\, \sin^2x} = \frac{1}{\sin^2x} - \frac{1}{\cos^2x} = \csc^2x - \sec^2x.
  2. Integrate term by term:

    (csc2xsec2x)dx=csc2xdxsec2xdx.\int (\csc^2x - \sec^2x)\,dx = \int \csc^2x\,dx - \int \sec^2x\,dx.

    We know that:

    csc2xdx=cotxandsec2xdx=tanx.\int \csc^2x\,dx = -\cot x \quad \text{and} \quad \int \sec^2x\,dx = \tan x.
  3. Combine the results:

    cos2xcos2xsin2xdx=cotxtanx+C.\int \frac{\cos2x}{\cos^2x\, \sin^2x}\,dx = -\cot x - \tan x + C.

Minimal Explanation:

  • Express cos2x\cos2x as cos2xsin2x\cos^2x - \sin^2x.
  • Rewrite the integrand as csc2xsec2x\csc^2x - \sec^2x.
  • Integrate to obtain cotxtanx+C-\cot x - \tan x + C.