Question
Question: $\int \frac{cos2x}{cos^2x sin^2x}dx$...
∫cos2xsin2xcos2xdx

Answer
-\cot x - \tan x + C
Explanation
Solution
Solution:
-
Write the integrand using an identity:
cos2x=cos2x−sin2xSubstitute into the original integrand:
cos2xsin2xcos2x=cos2xsin2xcos2x−sin2x=sin2x1−cos2x1=csc2x−sec2x. -
Integrate term by term:
∫(csc2x−sec2x)dx=∫csc2xdx−∫sec2xdx.We know that:
∫csc2xdx=−cotxand∫sec2xdx=tanx. -
Combine the results:
∫cos2xsin2xcos2xdx=−cotx−tanx+C.
Minimal Explanation:
- Express cos2x as cos2x−sin2x.
- Rewrite the integrand as csc2x−sec2x.
- Integrate to obtain −cotx−tanx+C.