Solveeit Logo

Question

Question: $\int \frac{cos^2x + sin2x}{(2cosx - sinx)^2}dx$...

cos2x+sin2x(2cosxsinx)2dx\int \frac{cos^2x + sin2x}{(2cosx - sinx)^2}dx

Answer

25lntanx21tanx2+25lnsecx15x+C-\frac{2}{5}\ln|\tan x - 2| - \frac{1}{\tan x - 2} + \frac{2}{5}\ln|\sec x| - \frac{1}{5}x + C

Explanation

Solution

The given integral is I=cos2x+sin2x(2cosxsinx)2dxI = \int \frac{\cos^2x + \sin2x}{(2\cos x - \sin x)^2}dx.

Step 1: Simplify the numerator using sin2x=2sinxcosx\sin2x = 2\sin x \cos x. Numerator =cos2x+2sinxcosx= \cos^2x + 2\sin x \cos x.

Step 2: Divide both the numerator and the denominator by cos2x\cos^2x. I=cos2x+2sinxcosxcos2x(2cosxsinx)2cos2xdxI = \int \frac{\frac{\cos^2x + 2\sin x \cos x}{\cos^2x}}{\frac{(2\cos x - \sin x)^2}{\cos^2x}}dx I=1+2tanx(2cosxsinxcosx)2dxI = \int \frac{1 + 2\tan x}{\left(\frac{2\cos x - \sin x}{\cos x}\right)^2}dx I=1+2tanx(2tanx)2dxI = \int \frac{1 + 2\tan x}{(2 - \tan x)^2}dx.

Step 3: Substitute t=tanxt = \tan x. Then dt=sec2xdx=(1+tan2x)dx=(1+t2)dxdt = \sec^2x \, dx = (1 + \tan^2x) \, dx = (1 + t^2) \, dx. So, dx=dt1+t2dx = \frac{dt}{1 + t^2}. Substituting these into the integral: I=1+2t(2t)2dt1+t2=2t+1(t2)2(t2+1)dtI = \int \frac{1 + 2t}{(2 - t)^2} \cdot \frac{dt}{1 + t^2} = \int \frac{2t + 1}{(t - 2)^2 (t^2 + 1)}dt.

Step 4: Perform partial fraction decomposition for the integrand 2t+1(t2)2(t2+1)\frac{2t + 1}{(t - 2)^2 (t^2 + 1)}. Let 2t+1(t2)2(t2+1)=At2+B(t2)2+Ct+Dt2+1\frac{2t + 1}{(t - 2)^2 (t^2 + 1)} = \frac{A}{t - 2} + \frac{B}{(t - 2)^2} + \frac{Ct + D}{t^2 + 1}. Multiplying by (t2)2(t2+1)(t - 2)^2 (t^2 + 1): 2t+1=A(t2)(t2+1)+B(t2+1)+(Ct+D)(t2)22t + 1 = A(t - 2)(t^2 + 1) + B(t^2 + 1) + (Ct + D)(t - 2)^2.

To find coefficients:

  1. Set t=2t = 2: 2(2)+1=A(0)+B(22+1)+(Ct+D)(0)2(2) + 1 = A(0) + B(2^2 + 1) + (Ct + D)(0) 5=5B    B=15 = 5B \implies B = 1.

  2. Compare coefficients of t3t^3: LHS has 0t30t^3. RHS has A(t3)+C(t)(t2)=(A+C)t3A(t^3) + C(t)(t^2) = (A + C)t^3. So, A+C=0    C=AA + C = 0 \implies C = -A.

  3. Compare coefficients of t2t^2: LHS has 0t20t^2. RHS has A(2t2)+B(t2)+C(4t2)+D(t2)=(2A+B4C+D)t2A(-2t^2) + B(t^2) + C(-4t^2) + D(t^2) = (-2A + B - 4C + D)t^2. So, 2A+B4C+D=0-2A + B - 4C + D = 0. Substitute B=1B = 1 and C=AC = -A: 2A+14(A)+D=0-2A + 1 - 4(-A) + D = 0 2A+1+4A+D=0-2A + 1 + 4A + D = 0 2A+D+1=02A + D + 1 = 0.

  4. Compare constant terms (set t=0t = 0): LHS has 11. RHS has A(2)(1)+B(1)+D(2)2=2A+B+4DA(-2)(1) + B(1) + D(-2)^2 = -2A + B + 4D. So, 1=2A+B+4D1 = -2A + B + 4D. Substitute B=1B = 1: 1=2A+1+4D    0=2A+4D    A=2D1 = -2A + 1 + 4D \implies 0 = -2A + 4D \implies A = 2D.

Now we have a system of equations for A and D: (1) 2A+D+1=02A + D + 1 = 0 (2) A=2DA = 2D Substitute (2) into (1): 2(2D)+D+1=02(2D) + D + 1 = 0 4D+D+1=0    5D=1    D=154D + D + 1 = 0 \implies 5D = -1 \implies D = -\frac{1}{5}. From A=2DA = 2D, A=2(15)=25A = 2(-\frac{1}{5}) = -\frac{2}{5}. From C=AC = -A, C=(25)=25C = -(-\frac{2}{5}) = \frac{2}{5}.

So, the partial fraction decomposition is: 2t+1(t2)2(t2+1)=2/5t2+1(t2)2+(2/5)t1/5t2+1\frac{2t + 1}{(t - 2)^2 (t^2 + 1)} = \frac{-2/5}{t - 2} + \frac{1}{(t - 2)^2} + \frac{(2/5)t - 1/5}{t^2 + 1} =25(t2)+1(t2)2+152t1t2+1= -\frac{2}{5(t - 2)} + \frac{1}{(t - 2)^2} + \frac{1}{5} \frac{2t - 1}{t^2 + 1}.

Step 5: Integrate each term. I=(25(t2)+1(t2)2+152t1t2+1)dtI = \int \left( -\frac{2}{5(t - 2)} + \frac{1}{(t - 2)^2} + \frac{1}{5} \frac{2t - 1}{t^2 + 1} \right) dt I=251t2dt+(t2)2dt+152tt2+1dt151t2+1dtI = -\frac{2}{5} \int \frac{1}{t - 2} dt + \int (t - 2)^{-2} dt + \frac{1}{5} \int \frac{2t}{t^2 + 1} dt - \frac{1}{5} \int \frac{1}{t^2 + 1} dt I=25lnt21t2+15ln(t2+1)15arctant+CI = -\frac{2}{5} \ln|t - 2| - \frac{1}{t - 2} + \frac{1}{5} \ln(t^2 + 1) - \frac{1}{5} \arctan t + C.

Step 6: Substitute back t=tanxt = \tan x. I=25lntanx21tanx2+15ln(tan2x+1)15arctan(tanx)+CI = -\frac{2}{5} \ln|\tan x - 2| - \frac{1}{\tan x - 2} + \frac{1}{5} \ln(\tan^2 x + 1) - \frac{1}{5} \arctan(\tan x) + C. Using tan2x+1=sec2x\tan^2 x + 1 = \sec^2 x and arctan(tanx)=x\arctan(\tan x) = x: I=25lntanx21tanx2+15ln(sec2x)15x+CI = -\frac{2}{5} \ln|\tan x - 2| - \frac{1}{\tan x - 2} + \frac{1}{5} \ln(\sec^2 x) - \frac{1}{5} x + C I=25lntanx21tanx2+25lnsecx15x+CI = -\frac{2}{5} \ln|\tan x - 2| - \frac{1}{\tan x - 2} + \frac{2}{5} \ln|\sec x| - \frac{1}{5}x + C.