Solveeit Logo

Question

Question: $\int \frac{4x}{\sqrt{2x^2-1}} \, dx$...

4x2x21dx\int \frac{4x}{\sqrt{2x^2-1}} \, dx

Answer

22x21+C2\sqrt{2x^2-1} + C

Explanation

Solution

Let u=2x21u = 2x^2 - 1. Then, du=4xdxdu = 4x \, dx.

Substitute into the integral:

4x2x21dx=1udu\int \frac{4x}{\sqrt{2x^2-1}} \, dx = \int \frac{1}{\sqrt{u}} \, du.

Integrate:

u1/2du=2u1/2+C\int u^{-1/2} \, du = 2u^{1/2} + C.

Substitute back:

22x21+C2\sqrt{2x^2-1} + C.

Explanation (Minimal):

Substitution u=2x21u = 2x^2-1 makes du=4xdxdu = 4x \, dx and the integral simplifies to u1/2du\int u^{-1/2} \, du, which integrates to 2u+C2\sqrt{u}+C.