Solveeit Logo

Question

Question: $\int \frac{3e^x + 5e^{-x}}{4e^x - 5e^{-x}}dx = Ax + B \ln |4e^{2x} - 5| + C$ the...

3ex+5ex4ex5exdx=Ax+Bln4e2x5+C\int \frac{3e^x + 5e^{-x}}{4e^x - 5e^{-x}}dx = Ax + B \ln |4e^{2x} - 5| + C the

A

A=-1, B=-7/8; C = const. of integration

B

A = 1, B = 7/8; C = const. of integration

C

A=-1/8, B = 7/8; C = const. of integration

D

A=-1, B=7/8; C = const. of integration

Answer

(4)

Explanation

Solution

To solve the integral I=3ex+5ex4ex5exdxI = \int \frac{3e^x + 5e^{-x}}{4e^x - 5e^{-x}}dx, we express the numerator as a linear combination of the denominator and its derivative.

Let D(x)=4ex5exD(x) = 4e^x - 5e^{-x}, then D(x)=4ex+5exD'(x) = 4e^x + 5e^{-x}.

We want to find λ\lambda and μ\mu such that 3ex+5ex=λ(4ex5ex)+μ(4ex+5ex)3e^x + 5e^{-x} = \lambda (4e^x - 5e^{-x}) + \mu (4e^x + 5e^{-x}). This gives us the equations:

4λ+4μ=34\lambda + 4\mu = 3 and 5λ+5μ=5-5\lambda + 5\mu = 5.

Solving this system, we find λ=1/8\lambda = -1/8 and μ=7/8\mu = 7/8.

Thus, I=18(4ex5ex)+78(4ex+5ex)4ex5exdx=18dx+784ex+5ex4ex5exdxI = \int \frac{-\frac{1}{8}(4e^x - 5e^{-x}) + \frac{7}{8}(4e^x + 5e^{-x})}{4e^x - 5e^{-x}}dx = -\frac{1}{8} \int dx + \frac{7}{8} \int \frac{4e^x + 5e^{-x}}{4e^x - 5e^{-x}} dx.

The second integral is 78ln4ex5ex\frac{7}{8} \ln|4e^x - 5e^{-x}|. So, I=18x+78ln4ex5ex+CI = -\frac{1}{8}x + \frac{7}{8} \ln|4e^x - 5e^{-x}| + C.

Since ln4ex5ex=lnex(4e2x5)=x+ln4e2x5\ln|4e^x - 5e^{-x}| = \ln|e^{-x}(4e^{2x} - 5)| = -x + \ln|4e^{2x} - 5|, we have

I=18x+78(x+ln4e2x5)+C=x+78ln4e2x5+CI = -\frac{1}{8}x + \frac{7}{8}(-x + \ln|4e^{2x} - 5|) + C = -x + \frac{7}{8} \ln|4e^{2x} - 5| + C.

Comparing with Ax+Bln4e2x5+CAx + B \ln |4e^{2x} - 5| + C, we get A=1A = -1 and B=7/8B = 7/8.