Solveeit Logo

Question

Question: $\int \frac{2x\sqrt{\sin^{-1}x}}{\sqrt{1-x^2}}dx$...

2xsin1x1x2dx\int \frac{2x\sqrt{\sin^{-1}x}}{\sqrt{1-x^2}}dx

Answer

Non-elementary integral

Explanation

Solution

The integral is 2xsin1x1x2dx\int \frac{2x\sqrt{\sin^{-1}x}}{\sqrt{1-x^2}}dx.

Substitute u=sin1xu = \sin^{-1}x. This implies x=sinux = \sin u and du=11x2dxdu = \frac{1}{\sqrt{1-x^2}}dx.

The integral transforms to 2(sinu)udu\int 2(\sin u)\sqrt{u} du.

This integral, 2usinudu\int 2\sqrt{u}\sin u du, is a non-elementary integral and cannot be expressed in terms of a finite combination of elementary functions.

Answer: The integral is a non-elementary integral.