Question
Question: $\int \frac{2-\tan x}{3+\tan x} dx =$...
∫3+tanx2−tanxdx=

21x+21ln∣3cosx+sinx∣+C
Solution
The problem asks us to evaluate the integral ∫3+tanx2−tanxdx.
1. Rewrite the integrand in terms of sine and cosine:
The first step is to express tanx as cosxsinx in the integrand:
3+tanx2−tanx=3+cosxsinx2−cosxsinx=cosx3cosx+sinxcosx2cosx−sinx=3cosx+sinx2cosx−sinx
So the integral becomes:
I=∫3cosx+sinx2cosx−sinxdx
2. Express the numerator as a linear combination of the denominator and its derivative:
This is a standard technique for integrals of the form ∫Ccosx+DsinxAcosx+Bsinxdx. Let the numerator be N(x)=2cosx−sinx and the denominator be D(x)=3cosx+sinx. The derivative of the denominator is D′(x)=dxd(3cosx+sinx)=−3sinx+cosx.
We want to find constants λ and μ such that N(x)=λD(x)+μD′(x).
2cosx−sinx=λ(3cosx+sinx)+μ(cosx−3sinx)
2cosx−sinx=(3λ+μ)cosx+(λ−3μ)sinx
Comparing the coefficients of cosx and sinx on both sides:
For cosx: 3λ+μ=2⋯(1)
For sinx: λ−3μ=−1⋯(2)
From equation (2), we can express λ=3μ−1. Substitute this into equation (1):
3(3μ−1)+μ=2
9μ−3+μ=2
10μ=5
μ=105=21
Now substitute the value of μ back into the expression for λ:
λ=3(21)−1=23−1=21
So, the numerator can be written as:
2cosx−sinx=21(3cosx+sinx)+21(cosx−3sinx)
3. Substitute back into the integral and integrate:
Now, substitute this expression for the numerator back into the integral:
I=∫3cosx+sinx21(3cosx+sinx)+21(cosx−3sinx)dx
I=∫(21+213cosx+sinxcosx−3sinx)dx
We can split this into two simpler integrals:
I=21∫1dx+21∫3cosx+sinxcosx−3sinxdx
The first integral is straightforward: 21∫1dx=21x.
For the second integral, let u=3cosx+sinx. Then, du=(−3sinx+cosx)dx=(cosx−3sinx)dx. So the second integral becomes:
21∫u1du=21ln∣u∣+C′=21ln∣3cosx+sinx∣+C′
Combining both parts, the complete integral is:
I=21x+21ln∣3cosx+sinx∣+C
where C is the constant of integration.