Solveeit Logo

Question

Question: $\int \frac{1+x^2}{1+x^4}dx = \frac{1}{\sqrt{2}} tan^{-1} \left[ \frac{f(x)}{\sqrt{2}} \right] + c$,...

1+x21+x4dx=12tan1[f(x)2]+c\int \frac{1+x^2}{1+x^4}dx = \frac{1}{\sqrt{2}} tan^{-1} \left[ \frac{f(x)}{\sqrt{2}} \right] + c, then f(x) =

A

x1xx - \frac{1}{x}

B

x+2xx + \frac{2}{x}

C

x1x2x - \frac{1}{x^2}

D

x+1x2x + \frac{1}{x^2}

Answer

x1xx-\frac{1}{x}

Explanation

Solution

Step-by-step Solution:

  1. Substitution Insight:
    Let

    u=x1xdudx=1+1x2.u = x - \frac{1}{x} \quad \Rightarrow \quad \frac{du}{dx} = 1 + \frac{1}{x^2}.

    Notice that the numerator in the integrand is 1+x21 + x^2. After a little algebra, you can see that multiplying 1+1/x21+1/x^2 by x2x^2 gives x2+1x^2 + 1.

  2. Form Matching:
    Also note that:

    u2=(x1x)2=x22+1x2u2+2=x2+1x2.u^2 = \left(x - \frac{1}{x}\right)^2 = x^2 - 2 + \frac{1}{x^2} \quad \Rightarrow \quad u^2+2 = x^2+\frac{1}{x^2}.

    With these observations, when differentiating

    12tan1(u2),\frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{u}{\sqrt{2}}\right),

    you indeed get a derivative proportional to

    1+x21+x4.\frac{1+x^2}{1+x^4}.
  3. Verification:
    A quick verification shows that if f(x)=x1xf(x)=x-\frac{1}{x}, then differentiating

    12tan1(x1/x2)\frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{x-1/x}{\sqrt{2}}\right)

    reproduces the integrand 1+x21+x4\frac{1+x^2}{1+x^4}.

Thus, the function f(x)f(x) is:

x1xx-\frac{1}{x}