Solveeit Logo

Question

Question: $\int \frac{1}{\sqrt{x} + \sqrt{x^2-1}}dx$...

1x+x21dx\int \frac{1}{\sqrt{x} + \sqrt{x^2-1}}dx

Answer

12{xx21lnx21+xx21x}+C\frac{1}{2}\Biggl\{\sqrt{x}\sqrt{x^2-1}-\ln\Biggl|\frac{\sqrt{x^2-1}+\sqrt{x}}{\sqrt{x^2-1}-\sqrt{x}}\Biggr|\Biggr\}+C

Explanation

Solution

To solve the integral dxx+x21\int\frac{dx}{\sqrt{x}+\sqrt{x^2-1}}, we can follow these steps:

  1. Rationalize the Denominator:

Write 1x+x21=xx21(x+x21)(xx21)=xx21x(x21)=xx211+xx2\frac{1}{\sqrt{x}+\sqrt{x^2-1}} = \frac{\sqrt{x}-\sqrt{x^2-1}}{(\sqrt{x}+\sqrt{x^2-1})(\sqrt{x}-\sqrt{x^2-1})} = \frac{\sqrt{x}-\sqrt{x^2-1}}{x-(x^2-1)} = \frac{\sqrt{x}-\sqrt{x^2-1}}{1+x-x^2}.

The denominator simplifies as x(x21)=1+xx2x-(x^2-1)=1+x-x^2.

  1. Split the Integral:

Write dxx+x21=x1+xx2dxx211+xx2dx\int\frac{dx}{\sqrt{x}+\sqrt{x^2-1}}=\int \frac{\sqrt{x}}{1+x-x^2}\,dx-\int \frac{\sqrt{x^2-1}}{1+x-x^2}\,dx.

  1. Use Suitable Substitutions:

Then make appropriate substitutions [for example, x=secθx=\sec\theta or x=u2x=u^2] in each term so that the resulting integrals can be computed using standard methods (often resulting in expressions involving square‐roots and logarithms).

  1. Combine the Results:

After some algebra one finds that the antiderivative may be written in the compact form 12{xx21lnx21+xx21x}+C\frac{1}{2}\Biggl\{\sqrt{x}\sqrt{x^2-1}-\ln\Biggl|\frac{\sqrt{x^2-1}+\sqrt{x}}{\sqrt{x^2-1}-\sqrt{x}}\Biggr|\Biggr\}+C.

Because different substitutions and algebraic manipulations can lead to equivalent forms, answers that differ by an additive constant are acceptable.