Solveeit Logo

Question

Question: $\int \frac{1+cos^2x}{1+cos^2 2x} dx$...

1+cos2x1+cos22xdx\int \frac{1+cos^2x}{1+cos^2 2x} dx

Answer

328tan1(tan2x2)+216ln2+sin2x2sin2x+C\frac{3\sqrt{2}}{8} \tan^{-1}\left(\frac{\tan 2x}{\sqrt{2}}\right) + \frac{\sqrt{2}}{16} \ln\left|\frac{\sqrt{2}+\sin 2x}{\sqrt{2}-\sin 2x}\right| + C

Explanation

Solution

The integral to solve is 1+cos2x1+cos22xdx\int \frac{1+\cos^2x}{1+\cos^2 2x} dx.

Step 1: Simplify the numerator using trigonometric identities. We know that cos2x=1+cos2x2\cos^2 x = \frac{1+\cos 2x}{2}. Substitute this into the numerator: 1+cos2x=1+1+cos2x2=2+1+cos2x2=3+cos2x21+\cos^2 x = 1 + \frac{1+\cos 2x}{2} = \frac{2+1+\cos 2x}{2} = \frac{3+\cos 2x}{2}.

Step 2: Rewrite the integral. The integral becomes: 3+cos2x21+cos22xdx=123+cos2x1+cos22xdx\int \frac{\frac{3+\cos 2x}{2}}{1+\cos^2 2x} dx = \frac{1}{2} \int \frac{3+\cos 2x}{1+\cos^2 2x} dx.

Step 3: Use substitution to simplify the argument of trigonometric functions. Let u=2xu = 2x. Then du=2dxdu = 2dx, which implies dx=12dudx = \frac{1}{2}du. Substitute uu and dxdx into the integral: 123+cosu1+cos2u12du=143+cosu1+cos2udu\frac{1}{2} \int \frac{3+\cos u}{1+\cos^2 u} \frac{1}{2} du = \frac{1}{4} \int \frac{3+\cos u}{1+\cos^2 u} du.

Step 4: Split the integral into two parts. 14(31+cos2u+cosu1+cos2u)du\frac{1}{4} \int \left( \frac{3}{1+\cos^2 u} + \frac{\cos u}{1+\cos^2 u} \right) du.

Step 5: Evaluate the first part of the integral. Let I1=31+cos2uduI_1 = \int \frac{3}{1+\cos^2 u} du. Divide the numerator and denominator by cos2u\cos^2 u: I1=3/cos2u1/cos2u+1du=3sec2usec2u+1duI_1 = \int \frac{3/\cos^2 u}{1/\cos^2 u + 1} du = \int \frac{3\sec^2 u}{\sec^2 u + 1} du. Use the identity sec2u=1+tan2u\sec^2 u = 1+\tan^2 u: I1=3sec2u(1+tan2u)+1du=3sec2u2+tan2uduI_1 = \int \frac{3\sec^2 u}{(1+\tan^2 u) + 1} du = \int \frac{3\sec^2 u}{2+\tan^2 u} du. Now, let t=tanut = \tan u. Then dt=sec2ududt = \sec^2 u \, du. I1=3dt2+t2=3dt(2)2+t2I_1 = \int \frac{3 dt}{2+t^2} = 3 \int \frac{dt}{(\sqrt{2})^2+t^2}. This is a standard integral of the form dxa2+x2=1atan1(xa)\int \frac{dx}{a^2+x^2} = \frac{1}{a}\tan^{-1}\left(\frac{x}{a}\right). I1=312tan1(t2)=32tan1(tanu2)I_1 = 3 \cdot \frac{1}{\sqrt{2}} \tan^{-1}\left(\frac{t}{\sqrt{2}}\right) = \frac{3}{\sqrt{2}} \tan^{-1}\left(\frac{\tan u}{\sqrt{2}}\right).

Step 6: Evaluate the second part of the integral. Let I2=cosu1+cos2uduI_2 = \int \frac{\cos u}{1+\cos^2 u} du. Let v=sinuv = \sin u. Then dv=cosududv = \cos u \, du. Also, cos2u=1sin2u=1v2\cos^2 u = 1-\sin^2 u = 1-v^2. Substitute these into the integral: I2=dv1+(1v2)=dv2v2I_2 = \int \frac{dv}{1+(1-v^2)} = \int \frac{dv}{2-v^2}. This is a standard integral of the form dxa2x2=12alna+xax\int \frac{dx}{a^2-x^2} = \frac{1}{2a}\ln\left|\frac{a+x}{a-x}\right|. Here a=2a=\sqrt{2}. I2=122ln2+v2vI_2 = \frac{1}{2\sqrt{2}} \ln\left|\frac{\sqrt{2}+v}{\sqrt{2}-v}\right|. Substitute back v=sinuv = \sin u: I2=122ln2+sinu2sinuI_2 = \frac{1}{2\sqrt{2}} \ln\left|\frac{\sqrt{2}+\sin u}{\sqrt{2}-\sin u}\right|.

Step 7: Combine the results and substitute back u=2xu=2x. The total integral is 14(I1+I2)\frac{1}{4} (I_1 + I_2). 1+cos2x1+cos22xdx=14[32tan1(tanu2)+122ln2+sinu2sinu]+C\int \frac{1+\cos^2x}{1+\cos^2 2x} dx = \frac{1}{4} \left[ \frac{3}{\sqrt{2}} \tan^{-1}\left(\frac{\tan u}{\sqrt{2}}\right) + \frac{1}{2\sqrt{2}} \ln\left|\frac{\sqrt{2}+\sin u}{\sqrt{2}-\sin u}\right| \right] + C. Substitute u=2xu=2x: =14[32tan1(tan2x2)+122ln2+sin2x2sin2x]+C= \frac{1}{4} \left[ \frac{3}{\sqrt{2}} \tan^{-1}\left(\frac{\tan 2x}{\sqrt{2}}\right) + \frac{1}{2\sqrt{2}} \ln\left|\frac{\sqrt{2}+\sin 2x}{\sqrt{2}-\sin 2x}\right| \right] + C. Simplify the coefficients: =342tan1(tan2x2)+182ln2+sin2x2sin2x+C= \frac{3}{4\sqrt{2}} \tan^{-1}\left(\frac{\tan 2x}{\sqrt{2}}\right) + \frac{1}{8\sqrt{2}} \ln\left|\frac{\sqrt{2}+\sin 2x}{\sqrt{2}-\sin 2x}\right| + C. Rationalize the denominators (optional, but often preferred): =328tan1(tan2x2)+216ln2+sin2x2sin2x+C= \frac{3\sqrt{2}}{8} \tan^{-1}\left(\frac{\tan 2x}{\sqrt{2}}\right) + \frac{\sqrt{2}}{16} \ln\left|\frac{\sqrt{2}+\sin 2x}{\sqrt{2}-\sin 2x}\right| + C.

The final answer is 328tan1(tan2x2)+216ln2+sin2x2sin2x+C\frac{3\sqrt{2}}{8} \tan^{-1}\left(\frac{\tan 2x}{\sqrt{2}}\right) + \frac{\sqrt{2}}{16} \ln\left|\frac{\sqrt{2}+\sin 2x}{\sqrt{2}-\sin 2x}\right| + C.