Solveeit Logo

Question

Question: $\int \frac{1}{(a + b \cos x)^2}dx, a>b>0$...

1(a+bcosx)2dx,a>b>0\int \frac{1}{(a + b \cos x)^2}dx, a>b>0

Answer

2a(a2b2)3/2arctan(aba+btan(x/2))bsinx(a2b2)(a+bcosx)+C\frac{2a}{(a^2-b^2)^{3/2}} \arctan\left(\sqrt{\frac{a-b}{a+b}}\tan(x/2)\right) - \frac{b\sin x}{(a^2-b^2)(a+b\cos x)} + C

Explanation

Solution

To evaluate the integral I=1(a+bcosx)2dxI = \int \frac{1}{(a + b \cos x)^2}dx, where a>b>0a>b>0, we can use a standard technique for integrals of the form 1(A+Bcosx)ndx\int \frac{1}{(A+B\cos x)^n} dx.

  1. Use a clever algebraic manipulation:
    We know that ddx(sinxa+bcosx)=cosx(a+bcosx)sinx(bsinx)(a+bcosx)2=acosx+bcos2x+bsin2x(a+bcosx)2=acosx+b(a+bcosx)2\frac{d}{dx} \left( \frac{\sin x}{a+b\cos x} \right) = \frac{\cos x (a+b\cos x) - \sin x (-b\sin x)}{(a+b\cos x)^2} = \frac{a\cos x + b\cos^2 x + b\sin^2 x}{(a+b\cos x)^2} = \frac{a\cos x + b}{(a+b\cos x)^2}.
    So, acosx+b(a+bcosx)2dx=sinxa+bcosx\int \frac{a\cos x + b}{(a+b\cos x)^2} dx = \frac{\sin x}{a+b\cos x}.

  2. Rewrite the numerator of the integrand:
    We want to integrate 1(a+bcosx)2\frac{1}{(a+b\cos x)^2}. We can express the numerator 11 in terms of a+bcosxa+b\cos x and acosx+ba\cos x+b.
    Consider the identity: a(a+bcosx)b(acosx+b)=a2+abcosxabcosxb2=a2b2a(a+b\cos x) - b(a\cos x + b) = a^2 + ab\cos x - ab\cos x - b^2 = a^2-b^2.
    Since a>b>0a>b>0, a2b20a^2-b^2 \neq 0.
    So, 1=1a2b2[a(a+bcosx)b(acosx+b)]1 = \frac{1}{a^2-b^2} [ a(a+b\cos x) - b(a\cos x + b) ].

  3. Substitute and split the integral:
    Substitute this expression for 11 into the integral:
    I=1a2b2[a(a+bcosx)b(acosx+b)(a+bcosx)2]dxI = \int \frac{1}{a^2-b^2} \left[ \frac{a(a+b\cos x) - b(a\cos x + b)}{(a+b\cos x)^2} \right] dx
    I=1a2b2[a(a+bcosx)(a+bcosx)2b(acosx+b)(a+bcosx)2]dxI = \frac{1}{a^2-b^2} \int \left[ \frac{a(a+b\cos x)}{(a+b\cos x)^2} - \frac{b(a\cos x + b)}{(a+b\cos x)^2} \right] dx
    I=1a2b2[a1a+bcosxdxbacosx+b(a+bcosx)2dx]I = \frac{1}{a^2-b^2} \left[ a \int \frac{1}{a+b\cos x} dx - b \int \frac{a\cos x + b}{(a+b\cos x)^2} dx \right]

  4. Evaluate the two resulting integrals:
    We already know the second integral: acosx+b(a+bcosx)2dx=sinxa+bcosx\int \frac{a\cos x + b}{(a+b\cos x)^2} dx = \frac{\sin x}{a+b\cos x}.
    For the first integral, 1a+bcosxdx\int \frac{1}{a+b\cos x} dx, we use the substitution t=tan(x/2)t = \tan(x/2).
    Then dx=2dt1+t2dx = \frac{2dt}{1+t^2} and cosx=1t21+t2\cos x = \frac{1-t^2}{1+t^2}.
    1a+bcosxdx=1a+b1t21+t22dt1+t2\int \frac{1}{a+b\cos x} dx = \int \frac{1}{a + b\frac{1-t^2}{1+t^2}} \frac{2dt}{1+t^2}
    =1+t2a(1+t2)+b(1t2)2dt1+t2=2dta+at2+bbt2=2dt(ab)t2+(a+b)= \int \frac{1+t^2}{a(1+t^2) + b(1-t^2)} \frac{2dt}{1+t^2} = \int \frac{2dt}{a+at^2+b-bt^2} = \int \frac{2dt}{(a-b)t^2 + (a+b)}
    =2abdtt2+a+bab=2abdtt2+(a+bab)2= \frac{2}{a-b} \int \frac{dt}{t^2 + \frac{a+b}{a-b}} = \frac{2}{a-b} \int \frac{dt}{t^2 + \left(\sqrt{\frac{a+b}{a-b}}\right)^2}
    This is of the form 1x2+k2dx=1karctan(xk)\int \frac{1}{x^2+k^2} dx = \frac{1}{k}\arctan\left(\frac{x}{k}\right).
    So, 1a+bcosxdx=2ab1a+babarctan(ta+bab)\int \frac{1}{a+b\cos x} dx = \frac{2}{a-b} \frac{1}{\sqrt{\frac{a+b}{a-b}}} \arctan\left(\frac{t}{\sqrt{\frac{a+b}{a-b}}}\right)
    =2(ab)(a+b)arctan(taba+b)=2a2b2arctan(aba+btan(x/2))= \frac{2}{\sqrt{(a-b)(a+b)}} \arctan\left(t\sqrt{\frac{a-b}{a+b}}\right) = \frac{2}{\sqrt{a^2-b^2}} \arctan\left(\sqrt{\frac{a-b}{a+b}}\tan(x/2)\right).

  5. Combine the results:
    Substitute these back into the expression for II:
    I=1a2b2[a(2a2b2arctan(aba+btan(x/2)))b(sinxa+bcosx)]+CI = \frac{1}{a^2-b^2} \left[ a \left( \frac{2}{\sqrt{a^2-b^2}} \arctan\left(\sqrt{\frac{a-b}{a+b}}\tan(x/2)\right) \right) - b \left( \frac{\sin x}{a+b\cos x} \right) \right] + C
    I=2a(a2b2)3/2arctan(aba+btan(x/2))bsinx(a2b2)(a+bcosx)+CI = \frac{2a}{(a^2-b^2)^{3/2}} \arctan\left(\sqrt{\frac{a-b}{a+b}}\tan(x/2)\right) - \frac{b\sin x}{(a^2-b^2)(a+b\cos x)} + C.

The final answer is 2a(a2b2)3/2arctan(aba+btan(x/2))bsinx(a2b2)(a+bcosx)+C\boxed{\frac{2a}{(a^2-b^2)^{3/2}} \arctan\left(\sqrt{\frac{a-b}{a+b}}\tan(x/2)\right) - \frac{b\sin x}{(a^2-b^2)(a+b\cos x)} + C}.

Explanation of the solution:

  1. Recognize the integral form.
  2. Use the identity ddx(sinxa+bcosx)=acosx+b(a+bcosx)2\frac{d}{dx} \left( \frac{\sin x}{a+b\cos x} \right) = \frac{a\cos x + b}{(a+b\cos x)^2}.
  3. Rewrite the numerator of the integrand: 1=1a2b2[a(a+bcosx)b(acosx+b)]1 = \frac{1}{a^2-b^2} [ a(a+b\cos x) - b(a\cos x + b) ].
  4. Substitute and split the integral into two parts:
    • a1a+bcosxdxa \int \frac{1}{a+b\cos x} dx
    • bacosx+b(a+bcosx)2dx-b \int \frac{a\cos x + b}{(a+b\cos x)^2} dx
  5. The second integral is directly solved using the derivative identity.
  6. The first integral is solved using the substitution t=tan(x/2)t = \tan(x/2), which transforms it into a standard integral of the form 1t2+k2dt\int \frac{1}{t^2+k^2} dt.
  7. Combine the results of the two integrals to get the final solution.