Solveeit Logo

Question

Question: $\int \frac{1}{1-2x} dx$...

112xdx\int \frac{1}{1-2x} dx

Answer

12ln12x+C-\frac{1}{2}\ln|1-2x|+C

Explanation

Solution

Let

u=12xdu=2dxdx=12duu = 1-2x \quad \Rightarrow \quad du = -2\,dx \quad \Rightarrow \quad dx = -\frac{1}{2}\,du.

Substitute in the integral:

112xdx=1u(12du)=12duu=12lnu+C\int \frac{1}{1-2x}\,dx = \int \frac{1}{u}\left(-\frac{1}{2}\,du\right) = -\frac{1}{2}\int \frac{du}{u} = -\frac{1}{2}\ln|u|+C.

Substitute back for uu:

12ln12x+C-\frac{1}{2}\ln|1-2x|+C.

Core Explanation:
Substitute u=12xu=1-2x, then integrate duu\int \frac{du}{u}, and resubstitute to obtain the result.