Solveeit Logo

Question

Question: $\int \frac{1-x^7}{x(1+x^7)}dx$ equals -...

1x7x(1+x7)dx\int \frac{1-x^7}{x(1+x^7)}dx equals -

Answer

lnx27ln1+x7+C\ln|x| - \frac{2}{7}\ln|1+x^7| + C

Explanation

Solution

To evaluate the integral 1x7x(1+x7)dx\int \frac{1-x^7}{x(1+x^7)}dx, we can use the method of substitution followed by partial fraction decomposition.

  1. Substitution: Let t=x7t = x^7.
    Differentiating both sides with respect to xx:
    dt=7x6dxdt = 7x^6 dx
    This implies dx=dt7x6dx = \frac{dt}{7x^6}.

    Now, substitute tt and dxdx into the integral: 1x7x(1+x7)dx=1tx(1+t)(dt7x6)\int \frac{1-x^7}{x(1+x^7)}dx = \int \frac{1-t}{x(1+t)} \left(\frac{dt}{7x^6}\right) =1t7x7(1+t)dt= \int \frac{1-t}{7x^7(1+t)} dt Since x7=tx^7 = t, we can replace x7x^7 in the denominator: =1t7t(1+t)dt= \int \frac{1-t}{7t(1+t)} dt =171tt(1+t)dt= \frac{1}{7} \int \frac{1-t}{t(1+t)} dt

  2. Partial Fraction Decomposition: Now, we need to decompose the rational function 1tt(1+t)\frac{1-t}{t(1+t)} into partial fractions.
    Let: 1tt(1+t)=At+B1+t\frac{1-t}{t(1+t)} = \frac{A}{t} + \frac{B}{1+t} Multiply both sides by t(1+t)t(1+t):
    1t=A(1+t)+Bt1-t = A(1+t) + Bt To find AA: Set t=0t=0:
    10=A(1+0)+B(0)1-0 = A(1+0) + B(0)
    1=A1 = A

    To find BB: Set t=1t=-1:
    1(1)=A(11)+B(1)1-(-1) = A(1-1) + B(-1)
    2=0B2 = 0 - B
    B=2B = -2

    So, the partial fraction decomposition is: 1tt(1+t)=1t21+t\frac{1-t}{t(1+t)} = \frac{1}{t} - \frac{2}{1+t}

  3. Integration: Substitute the partial fractions back into the integral: 17(1t21+t)dt\frac{1}{7} \int \left( \frac{1}{t} - \frac{2}{1+t} \right) dt Integrate each term: =17(1tdt21+tdt)= \frac{1}{7} \left( \int \frac{1}{t} dt - \int \frac{2}{1+t} dt \right) =17(lnt2ln1+t)+C= \frac{1}{7} \left( \ln|t| - 2\ln|1+t| \right) + C

  4. Substitute back t=x7t=x^7: =17(lnx72ln1+x7)+C= \frac{1}{7} \left( \ln|x^7| - 2\ln|1+x^7| \right) + C Using the logarithm property ln(ab)=bln(a)\ln(a^b) = b\ln(a): =17(7lnx2ln1+x7)+C= \frac{1}{7} \left( 7\ln|x| - 2\ln|1+x^7| \right) + C Distribute the 17\frac{1}{7}: =lnx27ln1+x7+C= \ln|x| - \frac{2}{7}\ln|1+x^7| + C