Solveeit Logo

Question

Question: $\int \frac{1 dx}{sin(x-a)sin(x-b)}$...

1dxsin(xa)sin(xb)\int \frac{1 dx}{sin(x-a)sin(x-b)}

Answer

1sin(ba)lnsin(xb)sin(xa)+C\frac{1}{\sin(b-a)} \ln\left|\frac{\sin(x-b)}{\sin(x-a)}\right| + C

Explanation

Solution

To solve the integral 1dxsin(xa)sin(xb)\int \frac{1 dx}{\sin(x-a)\sin(x-b)}, we use a standard technique for integrals of this form.

Let the integral be II. I=1sin(xa)sin(xb)dxI = \int \frac{1}{\sin(x-a)\sin(x-b)} dx We multiply the numerator and the denominator by sin(ba)\sin(b-a), where bab-a is the difference between the two angles in the denominator. This is a constant provided ba+kπb \neq a + k\pi for any integer kk.

I=1sin(ba)sin(ba)sin(xa)sin(xb)dxI = \frac{1}{\sin(b-a)} \int \frac{\sin(b-a)}{\sin(x-a)\sin(x-b)} dx We can rewrite the constant difference bab-a as the difference of the angles in the denominator: (xa)(xb)=xax+b=ba(x-a) - (x-b) = x-a-x+b = b-a. So, we substitute sin(ba)=sin((xa)(xb))\sin(b-a) = \sin((x-a) - (x-b)) in the numerator.

I=1sin(ba)sin((xa)(xb))sin(xa)sin(xb)dxI = \frac{1}{\sin(b-a)} \int \frac{\sin((x-a) - (x-b))}{\sin(x-a)\sin(x-b)} dx Now, we use the trigonometric identity for the sine of a difference: sin(AB)=sinAcosBcosAsinB\sin(A-B) = \sin A \cos B - \cos A \sin B. Here, A=xaA = x-a and B=xbB = x-b. sin((xa)(xb))=sin(xa)cos(xb)cos(xa)sin(xb)\sin((x-a) - (x-b)) = \sin(x-a)\cos(x-b) - \cos(x-a)\sin(x-b) Substitute this back into the integral: I=1sin(ba)sin(xa)cos(xb)cos(xa)sin(xb)sin(xa)sin(xb)dxI = \frac{1}{\sin(b-a)} \int \frac{\sin(x-a)\cos(x-b) - \cos(x-a)\sin(x-b)}{\sin(x-a)\sin(x-b)} dx Now, split the integrand into two separate fractions: I=1sin(ba)(sin(xa)cos(xb)sin(xa)sin(xb)cos(xa)sin(xb)sin(xa)sin(xb))dxI = \frac{1}{\sin(b-a)} \int \left( \frac{\sin(x-a)\cos(x-b)}{\sin(x-a)\sin(x-b)} - \frac{\cos(x-a)\sin(x-b)}{\sin(x-a)\sin(x-b)} \right) dx Simplify each term: I=1sin(ba)(cos(xb)sin(xb)cos(xa)sin(xa))dxI = \frac{1}{\sin(b-a)} \int \left( \frac{\cos(x-b)}{\sin(x-b)} - \frac{\cos(x-a)}{\sin(x-a)} \right) dx This simplifies to: I=1sin(ba)(cot(xb)cot(xa))dxI = \frac{1}{\sin(b-a)} \int (\cot(x-b) - \cot(x-a)) dx We know that the integral of cot(u)\cot(u) with respect to uu is lnsin(u)\ln|\sin(u)|. Applying this: cot(xb)dx=lnsin(xb)\int \cot(x-b) dx = \ln|\sin(x-b)| cot(xa)dx=lnsin(xa)\int \cot(x-a) dx = \ln|\sin(x-a)| So, the integral becomes: I=1sin(ba)(lnsin(xb)lnsin(xa))+CI = \frac{1}{\sin(b-a)} (\ln|\sin(x-b)| - \ln|\sin(x-a)|) + C Using the logarithm property lnAlnB=ln(A/B)\ln A - \ln B = \ln(A/B): I=1sin(ba)lnsin(xb)sin(xa)+CI = \frac{1}{\sin(b-a)} \ln\left|\frac{\sin(x-b)}{\sin(x-a)}\right| + C This solution is valid provided sin(ba)0\sin(b-a) \neq 0, which means bakπb-a \neq k\pi for any integer kk.

Explanation of the solution:

  1. Multiply by sin(ba)\sin(b-a): Introduce sin(ba)\sin(b-a) in the numerator and denominator.
  2. Rewrite Numerator: Express sin(ba)\sin(b-a) as sin((xa)(xb))\sin((x-a) - (x-b)).
  3. Expand: Use sin(AB)=sinAcosBcosAsinB\sin(A-B) = \sin A \cos B - \cos A \sin B to expand the numerator.
  4. Split Fraction: Divide the numerator by the denominator sin(xa)sin(xb)\sin(x-a)\sin(x-b) to get two terms.
  5. Simplify: Cancel common factors to obtain cot(xb)cot(xa)\cot(x-b) - \cot(x-a).
  6. Integrate: Integrate each cotangent term: cotudu=lnsinu\int \cot u \, du = \ln|\sin u|.
  7. Combine: Combine the results using logarithm properties.