Solveeit Logo

Question

Question: $\int \frac{1 + \cos 4x}{\cot x - \tan x} dx$...

1+cos4xcotxtanxdx\int \frac{1 + \cos 4x}{\cot x - \tan x} dx

Answer

18cos4x+C-\frac{1}{8}\cos 4x + C

Explanation

Solution

The integral is simplified by applying trigonometric identities to both the numerator and the denominator.

  1. Numerator 1+cos4x1 + \cos 4x is transformed to 2cos2(2x)2\cos^2(2x) using the half-angle identity.
  2. Denominator cotxtanx\cot x - \tan x is transformed to 2cot2x2\cot 2x by converting to sine and cosine and then using double angle identities.
  3. The integral then simplifies to cos2(2x)cot2xdx\int \frac{\cos^2(2x)}{\cot 2x} dx, which further reduces to sin2xcos2xdx\int \sin 2x \cos 2x dx.
  4. This product is converted to 12sin4x\frac{1}{2}\sin 4x using the double angle identity for sine.
  5. Finally, the integral of 12sin4x\frac{1}{2}\sin 4x is evaluated directly.