Solveeit Logo

Question

Question: $\int \frac{1-7\cos^2x}{\sin^7x \cos x} dx$...

17cos2xsin7xcosxdx\int \frac{1-7\cos^2x}{\sin^7x \cos x} dx

Answer

cot6x+114cot4x+2cot2x+lntanx+C\cot^6x + \frac{11}{4}\cot^4x + 2\cot^2x + \ln|\tan x| + C

Explanation

Solution

To solve the integral 17cos2xsin7xcosxdx\int \frac{1-7\cos^2x}{\sin^7x \cos x} dx, we can use the substitution method by transforming the integrand into terms of tanx\tan x and sec2x\sec^2 x.

Step 1: Divide numerator and denominator by a suitable power of cosx\cos x.

The highest power of sinx\sin x in the denominator is 7, and cosx\cos x is 1. The total power is 8. To convert the denominator to tanx\tan x, we can divide by cos8x\cos^8 x.

17cos2xcos8xsin7xcosxcos8xdx=1cos8x7cos2xcos8xsin7xcos7xdx\int \frac{\frac{1-7\cos^2x}{\cos^8x}}{\frac{\sin^7x \cos x}{\cos^8x}} dx = \int \frac{\frac{1}{\cos^8x} - \frac{7\cos^2x}{\cos^8x}}{\frac{\sin^7x}{\cos^7x}} dx =sec8x7sec6xtan7xdx= \int \frac{\sec^8x - 7\sec^6x}{\tan^7x} dx

Step 2: Express secx\sec x in terms of tanx\tan x.

Recall the identity sec2x=1+tan2x\sec^2x = 1+\tan^2x. So, sec8x=(sec2x)4=(1+tan2x)4\sec^8x = (\sec^2x)^4 = (1+\tan^2x)^4 and sec6x=(sec2x)3=(1+tan2x)3\sec^6x = (\sec^2x)^3 = (1+\tan^2x)^3. However, we need to save one sec2x\sec^2x for dudu when we substitute u=tanxu = \tan x. Let's rewrite the numerator as: sec8x7sec6x=sec6x(sec2x7)=(sec2x)3(sec2x7)=(1+tan2x)3(1+tan2x7)\sec^8x - 7\sec^6x = \sec^6x (\sec^2x - 7) = (\sec^2x)^3 (\sec^2x - 7) = (1+\tan^2x)^3 (1+\tan^2x - 7) =(1+tan2x)3(tan2x6)= (1+\tan^2x)^3 (\tan^2x - 6). This is not quite right. We need sec2x\sec^2x for dudu.

Let's factor out sec2x\sec^2x from the numerator:

sec6xsec2x7sec4xsec2xtan7xdx=sec2x[sec6x7sec4x]tan7xdx\int \frac{\sec^6x \cdot \sec^2x - 7\sec^4x \cdot \sec^2x}{\tan^7x} dx = \int \frac{\sec^2x [ \sec^6x - 7\sec^4x ]}{\tan^7x} dx

Now, express sec6x\sec^6x and sec4x\sec^4x in terms of tanx\tan x: sec6x=(sec2x)3=(1+tan2x)3\sec^6x = (\sec^2x)^3 = (1+\tan^2x)^3 sec4x=(sec2x)2=(1+tan2x)2\sec^4x = (\sec^2x)^2 = (1+\tan^2x)^2

Substitute these into the integral:

[(1+tan2x)37(1+tan2x)2]sec2xtan7xdx\int \frac{[(1+\tan^2x)^3 - 7(1+\tan^2x)^2] \sec^2x}{\tan^7x} dx

Step 3: Perform uu-substitution.

Let u=tanxu = \tan x. Then du=sec2xdxdu = \sec^2x dx. The integral becomes:

(1+u2)37(1+u2)2u7du\int \frac{(1+u^2)^3 - 7(1+u^2)^2}{u^7} du

Step 4: Simplify the integrand in terms of uu.

Factor out (1+u2)2(1+u^2)^2 from the numerator:

(1+u2)2[(1+u2)7]u7du\int \frac{(1+u^2)^2 [(1+u^2) - 7]}{u^7} du =(1+u2)2(u26)u7du= \int \frac{(1+u^2)^2 (u^2 - 6)}{u^7} du

Expand (1+u2)2(1+u^2)^2:

=(1+2u2+u4)(u26)u7du= \int \frac{(1 + 2u^2 + u^4)(u^2 - 6)}{u^7} du

Expand the numerator:

=u26+2u412u2+u66u4u7du= \int \frac{u^2 - 6 + 2u^4 - 12u^2 + u^6 - 6u^4}{u^7} du

Combine like terms in the numerator:

=u6+(26)u4+(112)u26u7du= \int \frac{u^6 + (2-6)u^4 + (1-12)u^2 - 6}{u^7} du =u64u411u26u7du= \int \frac{u^6 - 4u^4 - 11u^2 - 6}{u^7} du

Divide each term by u7u^7:

=(u6u74u4u711u2u76u7)du= \int \left( \frac{u^6}{u^7} - \frac{4u^4}{u^7} - \frac{11u^2}{u^7} - \frac{6}{u^7} \right) du =(u14u311u56u7)du= \int \left( u^{-1} - 4u^{-3} - 11u^{-5} - 6u^{-7} \right) du

Step 5: Integrate term by term.

=lnu4u2211u446u66+C= \ln|u| - 4\frac{u^{-2}}{-2} - 11\frac{u^{-4}}{-4} - 6\frac{u^{-6}}{-6} + C =lnu+2u2+114u4+u6+C= \ln|u| + 2u^{-2} + \frac{11}{4}u^{-4} + u^{-6} + C

Rewrite with positive exponents:

=lnu+2u2+114u4+1u6+C= \ln|u| + \frac{2}{u^2} + \frac{11}{4u^4} + \frac{1}{u^6} + C

Step 6: Substitute back u=tanxu = \tan x.

=lntanx+2tan2x+114tan4x+1tan6x+C= \ln|\tan x| + \frac{2}{\tan^2x} + \frac{11}{4\tan^4x} + \frac{1}{\tan^6x} + C

Using 1tanx=cotx\frac{1}{\tan x} = \cot x:

=cot6x+114cot4x+2cot2x+lntanx+C= \cot^6x + \frac{11}{4}\cot^4x + 2\cot^2x + \ln|\tan x| + C

The final answer is cot6x+114cot4x+2cot2x+lntanx+C\boxed{\cot^6x + \frac{11}{4}\cot^4x + 2\cot^2x + \ln|\tan x| + C}.

Explanation of the solution:

The integral is transformed by dividing the numerator and denominator by cos8x\cos^8x to express it in terms of tanx\tan x and sec2x\sec^2x. A substitution u=tanxu = \tan x is then used, which simplifies the integrand into a polynomial in u1u^{-1}. This polynomial is then integrated term by term using the power rule for integration. Finally, the result is converted back to terms of tanx\tan x and cotx\cot x.