Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

x3dx1+x4\int \frac{x^3dx}{1+x^4} equals

A

log(x4+1)+Clog (x^4+1) +C

B

14log(x4+1)+C\frac{1}{4} log (x^4+1)+C

C

12log(x4+1)+C\frac{1}{2} log (x^4 +1) +C

D

NoneoftheseNone\, of\, these

Answer

log(x4+1)+Clog (x^4+1) +C

Explanation

Solution

Let I=x31+x4dx...(i)I = \int \frac{x^3}{1+x^4} dx \,\,...(i)
Again, let 1+x4=t 1 + x^4 = t
4x3dx=dt\Rightarrow 4x^3 \,dx = dt
x3dx=14dt\Rightarrow x^3 \,dx = \frac{1}{4} dt
On putting these values in E (i)(i), we get
I=14dttI = \frac{1}{4} \int \frac{dt}{t}
=14logt+C=\frac{1}{4} log \,t +C
I=14log(1+x2)+C\Rightarrow I = \frac{1}{4} log (1 + x^2) + C [From E (i)(i)]