Question
Mathematics Question on Integrals of Some Particular Functions
∫1+x4x3dx equals
A
log(x4+1)+C
B
41log(x4+1)+C
C
21log(x4+1)+C
D
Noneofthese
Answer
log(x4+1)+C
Explanation
Solution
Let I=∫1+x4x3dx...(i)
Again, let 1+x4=t
⇒4x3dx=dt
⇒x3dx=41dt
On putting these values in E (i), we get
I=41∫tdt
=41logt+C
⇒I=41log(1+x2)+C [From E (i)]